scholarly journals Westward moving dynamic substorm features observed with the IMAGE magnetometer network and other ground-based instruments

1998 ◽  
Vol 16 (4) ◽  
pp. 425-440 ◽  
Author(s):  
H. Lühr ◽  
A. Aylward ◽  
S. C. Bucher ◽  
A. Pajunpää ◽  
K. Pajunpää ◽  
...  

Abstract. We present the ground signatures of dynamic substorm features with particular emphasis on the event interpretation capabilities provided by the IMAGE magnetometer network. This array covers the high latitudes from the sub-auroral to the cusp/cleft region. An isolated substorm on 11 Oct. 1993 during the late evening hours exhibited many of well-known features such as the Harang discontinuity, westward travelling surge and poleward leap, but also discrete auroral forms, known as auroral streamers, appeared propagating westward along the centre of the electrojet. Besides the magnetic field measurements, there were auroral observations and plasma flow and conductivity measurements obtained by EISCAT. The data of all three sets of instruments are consistent with the notion of upward field-aligned currents associated with the moving auroral patches. A detailed analysis of the electrodynamic parameters in the ionosphere, however, reveals that they do not agree with the expectations resulting from commonly used simplifying approximations. For example, the westward moving auroral streamers which are associated with field-aligned current filaments, are not collocated with the centres of equivalent current vortices. Furthermore, there is a clear discrepancy between the measured plasma flow direction and the obtained equivalent current direction. All this suggests that steep conductivity gradients are associated with the transient auroral forms. Also self-induction effects in the ionosphere may play a role for the orientation of the plasma flows. This study stresses the importance of multi-instrument observation for a reliable interpretation of dynamic auroral processes.Keywords. Ionosphere (Auroral ionosphere; Electric fields and currents; Ionosphere-magnetosphere interactions).

Geophysics ◽  
1967 ◽  
Vol 32 (4) ◽  
pp. 668-677 ◽  
Author(s):  
Douglas P. O’Brien ◽  
H. F. Morrison

From Maxwell’s equations and Ohm’s law for a horizontally anisotropic medium, it may be shown that two independent plane wave modes propagate perpendicular to the plane of the anisotropy. Boundary conditions at the interfaces in an n‐layered model permit the calculation, through successive matrix multiplications, of the fields at the surface in terms of the fields propagated into the basal infinite half space. Specifying the magnetic field at the surface allows the calculation of the resultant electric fields, and the calculation of the entries of a tensor impedance relationship. These calculations have been programmed for the digital computer and an interpretation of impedances obtained from field measurements may thus be made in terms of the anisotropic layering. In addition, apparent resistivities in orthogonal directions have been calculated for specific models and compared to experimental data. It is apparent that the large scatter of observed resistivities can be caused by small changes in the polarization of the magnetic field.


2006 ◽  
Vol 24 (3) ◽  
pp. 1137-1143
Author(s):  
A. T. Y. Lui

Abstract. Two different approaches, referred to as Bu and Ej, can be used to examine the time development of electric fields and currents in space plasmas based on the fundamental laws of physics. From the Bu approach, the required equation involves the generalized Ohm's law with some simplifying assumptions. From the Ej approach, the required equation can be derived from the equation of particle motion, coupled self-consistently with Maxwell's equation, and the definition of electric current density. Recently, some strong statements against the Ej approach have been made. In this paper, we evaluate these statements by discussing (1) some limitations of the Bu approach in solving the time development of electric fields and currents, (2) the procedure in calculating self-consistently the time development of the electric current in space plasmas without taking the curl of the magnetic field in some cases, and (3) the dependency of the time development of magnetic field on electric current. It is concluded that the Ej approach can be useful to understand some magnetospheric problems. In particular, statements about the change of electric current are valid theoretical explanations of change in magnetic field during substorms.


2001 ◽  
Vol 19 (7) ◽  
pp. 699-706 ◽  
Author(s):  
M. A. Danielides ◽  
S. Shalimov ◽  
J. Kangas

Abstract. We described the ground signatures of dynamic substorm features as observed by the imaging riometer, magnetometers and all-sky camera (ASC) at Kilpisjärvi, Finland on 5 and 25 October 1999 during the late evening hours. The magnetometer data was consistent with the motion of up-ward field-aligned currents (FACs) associated with absorption patches moving within the field of view of the riometer. We used riometer data in order to estimate the intensity of FACs associated with these local current-carrying filaments. It is shown that during these events, the estimated FAC intensity exceeds a threshold value that corresponds to the excitation of the low-frequency turbulence in the upper ionosphere. As a result, a quasi-oscillating regime of anomalous resistivity on the auroral field lines can give rise to the burst-like electron acceleration responsible for simultaneously observed auroral forms and bursts of Pi1B pulsations.Key words. Ionosphere (active experiments; auroral ionosphere; electric fields and currents)


2005 ◽  
Vol 23 (7) ◽  
pp. 2589-2597 ◽  
Author(s):  
V. M. Vasyliunas

Abstract. Maxwell's equations allow the magnetic field B to be calculated if the electric current density J is assumed to be completely known as a function of space and time. The charged particles that constitute the current, however, are subject to Newton's laws as well, and J can be changed by forces acting on charged particles. Particularly in plasmas, where the concentration of charged particles is high, the effect of the electromagnetic field calculated from a given J on J itself cannot be ignored. Whereas in ordinary laboratory physics one is accustomed to take J as primary and B as derived from J, it is often asserted that in plasmas B should be viewed as primary and J as derived from B simply as (c/4π)∇×B. Here I investigate the relation between ∇×B and J in the same terms and by the same method as previously applied to the MHD relation between the electric field and the plasma bulk flow vmv2001: assume that one but not the other is present initially, and calculate what happens. The result is that, for configurations with spatial scales much larger than the electron inertial length λe, a given ∇×B produces the corresponding J, while a given J does not produce any ∇×B but disappears instead. The reason for this can be understood by noting that ∇×B≠4π/c)J implies a time-varying electric field (displacement current) which acts to change both terms (in order to bring them toward equality); the changes in the two terms, however, proceed on different time scales, light travel time for B and electron plasma period for J, and clearly the term changing much more slowly is the one that survives. (By definition, the two time scales are equal at λe.) On larger scales, the evolution of B (and hence also of ∇×B) is governed by ∇×E, with E determined by plasma dynamics via the generalized Ohm's law; as illustrative simple examples, I discuss the formation of magnetic drift currents in the magnetosphere and of Pedersen and Hall currents in the ionosphere. Keywords. Ionosphere (Electric fields and currents) – Magnetospheric physics (Magnetosphere-ionosphere interactions) – Space plasma physics (Kinetic and MHD theory)


2003 ◽  
Vol 21 (3) ◽  
pp. 719-728 ◽  
Author(s):  
M. A. Danielides ◽  
A. Kozlovsky

Abstract. On 11 February 1997 at 08:36 UT after a substorm onset the Auroral Turbulence 2 sounding rocket was launched from Poker Flat Research Range, Alaska into a moderately active auroral region. This experiment has allowed us to investigate evening (21:00 MLT) auroral forms at the substorm recovery, which were discrete multiple auroral arcs stretched to, the east and southeast from the breakup region, and bright auroral patches propagating westward along the arcs like a luminosity wave, which is a typical feature of the disturbed arc. The rocket crossed an auroral arc of about 40 km width, stretched along southeast direction. Auroral patches and associated electric fields formed a 200 km long periodical structure, which propagated along the arc westward at a velocity of 3 km/s, whereas the ionospheric plasma velocity inside the arc was 300 m/s westward. The spatial periodicity in the rocket data was found from optical ground-based observations, from electric field in situ measurements, as well as from ground-based magnetic observations. The bright patches were co-located with equatorward plasma flow across the arc of the order of 200 m/s in magnitude, whereas the plasma flow tended to be poleward at the intervals between the patches, where the electric field reached the magnitude of up to 20 mV/m, and these maxima were co-located with the peaks in electron precipitations indicated by the electron counter on board the rocket. Pulsations of a 70-s period were observed on the ground in the eastern component of the magnetic field and this is consistent with the moving auroral patches and the north-south plasma flows associated with them. The enhanced patch-associated electric field and fast westward propagation suggest essential differences between evening auroral patches and those occurring in the morning ionosphere. We propose the wave that propagates along the plasma sheet boundary to be a promising mechanism for the evening auroral patches.Key words. Ionosphere (auroral ionosphere; electric fields and currents)


2008 ◽  
Vol 26 (7) ◽  
pp. 1725-1730 ◽  
Author(s):  
E. D. Tereshchenko ◽  
N. Yu. Romanova ◽  
A. V. Koustov

Abstract. Scintillation data recorded at the polar cap station Barentsburg are shown to occasionally exhibit two or more peaks in the latitudinal profiles of the amplitude dispersion. Comparison with concurrent SuperDARN radar convection maps indicates that multiple peaks occur when Barentsburg is located within the area of strong changes in the plasma flow direction. When parameters of the ionospheric irregularities are inferred from the scintillation data, the orientation of the irregularity anisotropy in a plane perpendicular to the magnetic field is found to coincide well with the E×B flow direction, individually for each peak of the scintillation data. The differences were found to be mostly less than 20° for a data set comprised of 104 events. The conclusion is made that analysis of scintillation data allows one to infer the direction of plasma flow with a certain degree of detail.


2009 ◽  
Vol 27 (4) ◽  
pp. 1489-1500
Author(s):  
T. Johansson ◽  
J. W. Bonnell ◽  
C. Cully ◽  
E. Donovan ◽  
J. Raeder ◽  
...  

Abstract. Themis E observed a perpendicular (to the magnetic field) electric field associated with an Earthward plasma flow at XGSM=−9.6 RE on 11 January 2008. The electric field observation resembles Cluster observations closer to Earth in the auroral region. The fast plasma flow shared some characteristics with bursty bulk flows (BBFs) but did not meet the usual criteria in maximum velocity and duration to qualify as one. Themis C observed the same flow further downtail but Themis D, separated by only 1 RE in azimuthal direction from Themis E, did not. At the time of the electric field and ion flow event, the all-sky imager and ground-based magnetometer at Rankin Inlet observed Poleward Boundary Intensifications (PBIs) and a negative bay signature. None of the other Themis ground-based observatories recorded any significant auroral or magnetic field activity, indicating that this was a localized activity. The joint Themis in situ and ground-based observations suggest that the two observations are related. This indicates that auroral electric fields can extend to regions much farther out than previously seen in Cluster observations.


2020 ◽  
Vol 9 (5) ◽  
pp. 305-312
Author(s):  
Ryan Cardman ◽  
Luís F. Gonçalves ◽  
Rachel E. Sapiro ◽  
Georg Raithel ◽  
David A. Anderson

AbstractWe present electric field measurements and imaging of a Yagi–Uda antenna near-field using a Rydberg atom–based radio frequency electric field measurement instrument. The instrument uses electromagnetically induced transparency with Rydberg states of cesium atoms in a room-temperature vapor and off-resonant RF-field–induced Rydberg-level shifts for optical SI-traceable measurements of RF electric fields over a wide amplitude and frequency range. The electric field along the antenna boresight is measured using the atomic probe at a spatial resolution of ${\lambda }_{RF}/2$ with electric field measurement uncertainties below 5.5%, an improvement to RF measurement uncertainties provided by existing antenna standards.


Sign in / Sign up

Export Citation Format

Share Document