scholarly journals Time development of electric fields and currents in space plasmas

2006 ◽  
Vol 24 (3) ◽  
pp. 1137-1143
Author(s):  
A. T. Y. Lui

Abstract. Two different approaches, referred to as Bu and Ej, can be used to examine the time development of electric fields and currents in space plasmas based on the fundamental laws of physics. From the Bu approach, the required equation involves the generalized Ohm's law with some simplifying assumptions. From the Ej approach, the required equation can be derived from the equation of particle motion, coupled self-consistently with Maxwell's equation, and the definition of electric current density. Recently, some strong statements against the Ej approach have been made. In this paper, we evaluate these statements by discussing (1) some limitations of the Bu approach in solving the time development of electric fields and currents, (2) the procedure in calculating self-consistently the time development of the electric current in space plasmas without taking the curl of the magnetic field in some cases, and (3) the dependency of the time development of magnetic field on electric current. It is concluded that the Ej approach can be useful to understand some magnetospheric problems. In particular, statements about the change of electric current are valid theoretical explanations of change in magnetic field during substorms.

Geophysics ◽  
1967 ◽  
Vol 32 (4) ◽  
pp. 668-677 ◽  
Author(s):  
Douglas P. O’Brien ◽  
H. F. Morrison

From Maxwell’s equations and Ohm’s law for a horizontally anisotropic medium, it may be shown that two independent plane wave modes propagate perpendicular to the plane of the anisotropy. Boundary conditions at the interfaces in an n‐layered model permit the calculation, through successive matrix multiplications, of the fields at the surface in terms of the fields propagated into the basal infinite half space. Specifying the magnetic field at the surface allows the calculation of the resultant electric fields, and the calculation of the entries of a tensor impedance relationship. These calculations have been programmed for the digital computer and an interpretation of impedances obtained from field measurements may thus be made in terms of the anisotropic layering. In addition, apparent resistivities in orthogonal directions have been calculated for specific models and compared to experimental data. It is apparent that the large scatter of observed resistivities can be caused by small changes in the polarization of the magnetic field.


2018 ◽  
Vol 177 ◽  
pp. 08004
Author(s):  
Łukasz Tomków

The model of a single Nuclotron-type cable is presented. The goal of this model is to assess the behaviour of the cable under different loads. Two meshes with different simplifications are applied. In the first case, the superconductor in the cable is modelled as single region. Second mesh considers individual strands of the cable. The significant differences between the distributions of the electric current density obtained with both models are observed. The magnetic field remains roughly similar.


2016 ◽  
Vol 34 (1) ◽  
pp. 55-65 ◽  
Author(s):  
A. D. M. Walker ◽  
G. J. Sofko

Abstract. When studying magnetospheric convection, it is often necessary to map the steady-state electric field, measured at some point on a magnetic field line, to a magnetically conjugate point in the other hemisphere, or the equatorial plane, or at the position of a satellite. Such mapping is relatively easy in a dipole field although the appropriate formulae are not easily accessible. They are derived and reviewed here with some examples. It is not possible to derive such formulae in more realistic geomagnetic field models. A new method is described in this paper for accurate mapping of electric fields along field lines, which can be used for any field model in which the magnetic field and its spatial derivatives can be computed. From the spatial derivatives of the magnetic field three first order differential equations are derived for the components of the normalized element of separation of two closely spaced field lines. These can be integrated along with the magnetic field tracing equations and Faraday's law used to obtain the electric field as a function of distance measured along the magnetic field line. The method is tested in a simple model consisting of a dipole field plus a magnetotail model. The method is shown to be accurate, convenient, and suitable for use with more realistic geomagnetic field models.


2018 ◽  
Vol 55 (3) ◽  
pp. 442-446
Author(s):  
Carmen Penelopi Papadatu ◽  
Andrei Victor Sandu ◽  
Marian Bordei ◽  
Ioan Gabriel Sandu ◽  
Sorin Ciortan

The article focuses on the behavior of the non-conventional treated alloyed steel in magnetic field, during the dry wear tests. It is a review of the experimental tests from last years. The thermo-magnetic treatments have been applied before the application of a thermo-chemical treatment in plasma based on diffusion process. The study was made in order to improve the mechanical properties of the alloyed steel during the friction wear. Thermo-magnetic treatment applied before the plasma nitro-carburizing treatment improves the mechanical properties of the material especially in this case, for a steel that has a considerable content of Chromium (1.02%). The behavior was studied using X-Ray diffractometry of the superficial layers during the dry friction of wear process. The wear tests used an Amsler machine, during three hours of wear tests. After each hour of the wear tests the samples have been analyzed. The diffractometric characteristics of the superficial layers obtained after a complex array of thermo-magnetic and thermo-chemical in plasma treatments, the phases distribution, the content of the superficial layers and the behavior of the steel during the wear through dry friction tests, have been considered as criteria.


The distortion of the lines of flow of an electric current in a thin metal plate by the action of a magnetic field was discovered in 1879. Hall attributed this to the action of the magnetic field on the molecular currents in the metal film, which were deflected to one side or the other and accompanied by a corresponding twist of the equipotential lines. This explanation did not pass without criticism, and another theory of the effect found by Hall was published in 1884. In that paper the author seeks to explain the effect by assuming a combination of certain mechanical strains and Peltier effects, a thermo-electric current being set up between the strained and the unstrained portions. The effect of such strain was to produce a reverse effect in some metals, and these were precisely the metals for which the Hall effect was found to reverse. Aluminium was the only exception. In other respects, however, as shown by Hall in a later paper, Bidwell's theory did not stand the test of experiment, and the results lend no support to his theory, while they are in complete accordance withe the explanation that the molecular currents are disturbed by the action of the magnetic field. On the electron theory of metallic conduction, the mechanism of the Hall effect is more obvious, but at present no satisfactory explanation of the reversal found in some metals is known. Further experiments have made it clear that there is a real deflection of the elementary currents, due to the application of the magnetic field, independent of any effect due to strain.


2004 ◽  
Vol 11 (5/6) ◽  
pp. 535-543 ◽  
Author(s):  
Y. Voitenko ◽  
M. Goossens

Abstract. There is abundant observational evidence that the energization of plasma particles in space is correlated with an enhanced activity of large-scale MHD waves. Since these waves cannot interact with particles, we need to find ways for these MHD waves to transport energy in the dissipation range formed by small-scale or high-frequency waves, which are able to interact with particles. In this paper we consider the dissipation range formed by the kinetic Alfvén waves (KAWs) which are very short- wavelengths across the magnetic field irrespectively of their frequency. We study a nonlocal nonlinear mechanism for the excitation of KAWs by MHD waves via resonant decay AW(FW)→KAW1+KAW2, where the MHD wave can be either an Alfvén wave (AW), or a fast magneto-acoustic wave (FW). The resonant decay thus provides a non-local energy transport from large scales directly in the dissipation range. The decay is efficient at low amplitudes of the magnetic field in the MHD waves, B/B0~10-2. In turn, KAWs are very efficient in the energy exchange with plasma particles, providing plasma heating and acceleration in a variety of space plasmas. An anisotropic energy deposition in the field-aligned degree of freedom for the electrons, and in the cross-field degrees of freedom for the ions, is typical for KAWs. A few relevant examples are discussed concerning nonlinear excitation of KAWs by the MHD wave flux and consequent plasma energization in the solar corona and terrestrial magnetosphere.


2004 ◽  
Vol 22 (4) ◽  
pp. 1213-1231 ◽  
Author(s):  
J. A. Cumnock ◽  
L. G. Blomberg

Abstract. We present two event studies encompassing detailed relationships between plasma convection, field-aligned current, auroral emission, and particle precipitation boundaries. We illustrate the influence of the Interplanetary Magnetic Field By component on theta aurora development by showing two events during which the theta originates on both the dawn and dusk sides of the auroral oval. Both theta then move across the entire polar region and become part of the opposite side of the auroral oval. Electric and magnetic field and precipitating particle data are provided by DMSP, while the Polar UVI instrument provides measurements of auroral emissions. Utilizing satellite data as inputs, the Royal Institute of Technology model provides the high-latitude ionospheric electrostatic potential pattern calculated at different times during the evolution of the theta aurora, resulting from a variety of field-aligned current configurations associated with the changing global aurora. Key words. Ionosphere (auroral ionosphere; electric fields and currents). Magnetospheric physics (magnetosphereionosphere interactions)


1972 ◽  
Vol 55 (1) ◽  
pp. 105-112
Author(s):  
C. Sozou

The equilibrium configuration of a slowly rotating self-gravitating perfectly conducting inviscid liquid, in the presence of a small poloidal magnetic field, is considered for a case where the electric current is a simple function of the distance from the axis of rotation. Owing to the coupling of the magnetic field with the rotation the electric current may reverse direction. This could make the magnetic field zero on certain surfaces and impose restrictions on the parameters of the problem. A perturbation expansion of the nearly spherical surface of the liquid is constructed.


2007 ◽  
Vol 21 (10) ◽  
pp. 1715-1720 ◽  
Author(s):  
NANA METREVELI ◽  
ZAUR KACHLISHVILI ◽  
BEKA BOCHORISHVILI

The transverse runaway (TR) is a phenomenon whereby for a certain combination of energy and momentum scattering mechanisms of hot electrons, and for a certain threshold of the applied electric field, the internal (total) field tends to infinity. In this work, the effect of the magnetic field on the transverse runaway threshold is considered. It is shown that with increasing magnetic field, the applied critical electric fields relevant to TR decrease. The obtained results are important for practical applications of the TR effect as well as for the investigation of possible nonlinear oscillations that may occur near the TR threshold.


Sign in / Sign up

Export Citation Format

Share Document