scholarly journals ULF wave occurrence statistics in a high-latitude HF Doppler sounder

1999 ◽  
Vol 17 (6) ◽  
pp. 749-758 ◽  
Author(s):  
D. M. Wright ◽  
T. K. Yeoman ◽  
T. B. Jones

Abstract. Ultra low frequency (ULF) wave activity in the high-latitude ionosphere has been observed by a high frequency (HF) Doppler sounder located at Tromsø, Norway (69.7°N, 19.2°E geographic coordinates). A statistical study of the occurrence of these waves has been undertaken from data collected between 1979 and 1984. The diurnal, seasonal, solar cycle and geomagnetic activity variations in occurrence have been investigated. The findings demonstrate that the ability of the sounder to detect ULF wave signatures maximises at the equinoxes and that there is a peak in occurrence in the morning sector. The occurrence rate is fairly insensitive to changes associated with the solar cycle but increases with the level of geomagnetic activity. As a result, it has been possible to characterise the way in which prevailing ionospheric and magnetospheric conditions affect such observations of ULF waves.Key words. Ionosphere (auroral ionosphere; ionosphere -magnetosphere interactions) · Magnetospheric physics (MHD waves and instabilities)

2002 ◽  
Vol 20 (11) ◽  
pp. 1769-1781 ◽  
Author(s):  
J.-P. Villain ◽  
R. André ◽  
M. Pinnock ◽  
R. A. Greenwald ◽  
C. Hanuise

Abstract. The HF radars of the Super Dual Auroral Radar Network (SuperDARN) provide measurements of the E × B drift of ionospheric plasma over extended regions of the high-latitude ionosphere. We have conducted a statistical study of the associated Doppler spectral width of ionospheric F-region echoes. The study has been conducted with all available radars from the Northern Hemisphere for 2 specific periods of time. Period 1 corresponds to the winter months of 1994, while period 2 covers October 1996 to March 1997. The distributions of data points and average spectral width are presented as a function of Magnetic Latitude and Magnetic Local Time. The databases are very consistent and exhibit the same features. The most stringent features are: a region of very high spectral width, collocated with the ionospheric LLBL/cusp/mantle region; an oval shaped region of high spectral width, whose equator-ward boundary matches the poleward limit of the Holzworth and Meng auroral oval. A simulation has been conducted to evaluate the geometrical and instrumental effects on the spectral width. It shows that these effects cannot account for the observed spectral features. It is then concluded that these specific spectral width characteristics are the signature of ionospheric/magnetospheric coupling phenomena.Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; ionospheric irregularities)


2017 ◽  
Vol 35 (3) ◽  
pp. 475-479
Author(s):  
Hanna Dahlgren ◽  
Nicola M. Schlatter ◽  
Nickolay Ivchenko ◽  
Lorenz Roth ◽  
Alexander Karlsson

Abstract. Non-thermal echoes in incoherent scatter radar observations are occasionally seen in the high-latitude ionosphere. Such anomalous echoes are a manifestation of plasma instabilities on spatial scales matching the radar wavelength. Here we investigate the occurrence of a class of spatially localized anomalous echoes with an enhanced zero Doppler frequency feature and their relation to auroral particle precipitation. The ionization profile of the E region is used to parametrize the precipitation, with nmE and hmE being the E region peak electron density and the altitude of the peak, respectively. We find the occurrence rate of the echoes to generally increase with nmE and decrease with hmE, thereby indicating a correlation between the echoes and high-energy flux precipitation of particles with a high characteristic energy. The highest occurrence rate of > 20 % is found for hmE  =  109 km and nmE  =  1011. 9 m−3, averaged over the radar observation volume.


2013 ◽  
Vol 31 (12) ◽  
pp. 2163-2178 ◽  
Author(s):  
P. Kajdič ◽  
X. Blanco-Cano ◽  
N. Omidi ◽  
K. Meziane ◽  
C. T. Russell ◽  
...  

Abstract. In this work we perform a statistical analysis of 92 foreshock cavitons observed with the Cluster spacecraft 1 during the period 2001–2006. We analyze time intervals during which the spacecraft was located in the Earth's foreshock with durations longer than 10 min. Together these amount to ~ 50 days. The cavitons are transient structures in the Earth's foreshock. Their main signatures in the data include simultaneous depletions of the magnetic field intensity and plasma density, which are surrounded by a rim of enhanced values of these two quantities. Cavitons form due to nonlinear interaction of transverse and compressive ultra-low frequency (ULF) waves and are therefore always surrounded by intense compressive ULF fluctuations. They are carried by the solar wind towards the bow shock. This work represents the first systematic study of a large sample of foreshock cavitons. We find that cavitons appear for a wide range of solar wind and interplanetary magnetic field conditions and are therefore a common feature upstream of Earth's quasi-parallel bow shock with an average occurrence rate of ~ 2 events per day. We also discuss their observational properties in the context of other known upstream phenomena and show that the cavitons are a distinct structure in the foreshock.


2021 ◽  
Vol 14 (12) ◽  
pp. 1013-1020
Author(s):  
M T Khan ◽  
◽  
K A Nafees ◽  
A K Singh

Background/Objectives: Magnetic Pulsations recorded on the ground in the earth are produced by processes inside the magnetosphere and solar wind. These processes produce a wide variety of ULF hydromagnetic wave type which can be categorized on the ground as either Pi or Pc pulsations (irregular or continuous). Methods: Distinctive regions of the magnetosphere originate different frequencies of waves. Digital Dynamic Spectra (DDS) for the northsouth (X), east-west (Y) and vertical (Z) components of the recorded data were constructed for every day for 365 days (January 1 to December 31, 2005) in the station order PON, HAN and NAG respectively. Pc4 geomagnetic pulsations are quasi-sinusoidal fluctuations in the earth’s magnetic field in the length range 45-150 seconds. The magnitude of these pulsations ranges from fraction of a Nano Tesla (nT) to several nT. The monthly variation of Pc4 occurrence has a Kp dependence range of 0 to 9-. However, Pc4 occurrence was reported for Kp values, yet the major Pc4 events occurred for rage 5+ <Kp< 8+. The magnitudes of intervals of Pc4 occurrence decreased in the station order PON, HAN and NAG respectively. Analysis of the data for the whole year 2005 provided similar patterns of Pc4 occurrence for Vsw at all the three stations. Although Pc4 ULF wave occurrence become reported for Vsw ranging from 250 to 1000 Km/s, yet the major Pc4 event recorded for a Vsw range of 300-700 Km/sec. Findings: The current study is undertaken for describing the interaction of Pc4 ULF waves with solar wind speed and its dependence on Kp values. The results suggest that the solar wind control Pc4 occurrence through a mechanism in which Pc4 wave energy is convected through the magnetosheath and coupled to the standing oscillations of the magnetospheric field lines. PACS Nos: 94.30.cq; 96.50.Tf Keywords: Geomagnetic micropulsations; MHD waves and instabilities; Solar wind-control of Pc4 pulsation


1998 ◽  
Vol 16 (10) ◽  
pp. 1190-1199 ◽  
Author(s):  
D. M. Wright ◽  
T. K. Yeoman ◽  
J. A. Davies

Abstract. Since the middle of 1995, an HF Doppler sounder has been running almost continuously in northern Norway, with the receiver at Ramfjordmoen and the transmitter at Seljelvnes. Concurrent operation of the EISCAT UHF radar in common programme (CP-1) mode has made it possible to study the ionospheric signature of a magnetospheric ULF wave. These are the first results of such wave signatures observed simultaneously in both instruments. It has been demonstrated that the observed Doppler signature was mainly due to the vertical bulk motion of the ionosphere caused by the electric field perturbation of the ULF wave and the first direct observational confirmation of a numerical simulation has been achieved. The wave, which was Alfvénic in nature, was detected by the instruments 8° equatorward of the broad resonance region. The implications for the deduced wave modes in the ionosphere and the mechanism producing the HF Doppler variations are discussed.Key words. Magnetosphere-ionosphere interactions · MHD waves and instabilities · Radio science · Ionospheric physics


2005 ◽  
Vol 23 (5) ◽  
pp. 1807-1820 ◽  
Author(s):  
L. J. Baddeley ◽  
T. K. Yeoman ◽  
D. M. Wright

Abstract. An HF Doppler sounder, DOPE (DOppler Pulsation Experiment) with three azimuthally-separated propagation paths is used to provide the first statistical examination of small scale-sized, high m waves where a direct measurement of the azimuthal wavenumber m, is made in the ionosphere. The study presents 27 events, predominantly in the post-noon sector. The majority of events are Pc4 waves with azimuthal m numbers ranging from –100 to –200, representing some of the smallest scale waves ever observed in the ionosphere. 4 Pc5 waves are observed in the post-noon sector. The fact that measurements for the wave azimuthal m number and the wave angular frequency are available allows the drift-bounce resonance condition to be used to hypothesise potential particle populations which could drive the waves through either a drift or drift-bounce resonance interaction mechanism. These results are compared with the statistical study presented by Baddeley et al. (2004) which investigated the statistical likelihood of such driving particle populations occurring in the magnetospheric ring current. The combination of these two studies indicates that any wave which requires a possible drift resonance interaction with particles of energies >60 keV, is statistically unlikely to be generated by such a mechanism. The evidence presented in this paper therefore suggests that in the pre-noon sector the drift-bounce resonance mechanism is statistically more likely implying an anti-symmetric standing wave structure while in the post-noon sector both a drift or drift-bounce resonance interaction is statistically possible, indicating both symmetric and anti-symmetric standing mode structures. A case study is also presented investigating simultaneous observations of a ULF wave in ground magnetometer and DOPE data. The event is in the lower m range of the statistical study and displays giant pulsation (Pg) characteristics. Keywords. Ionosphere (Ionosphere-magnetosphere interactions) – Magnetospheric physics (MHD waves and instabilities) – Space plasma physics (Wave-particle interactions)


1999 ◽  
Vol 17 (7) ◽  
pp. 868-876 ◽  
Author(s):  
D. M. Wright ◽  
T. K. Yeoman

Abstract. The DOPE (Doppler Pulsation Experiment) HF Doppler sounder located near Tromsø, Norway (geographic: 69.6°N 19.2°E; L = 6.3) is deployed to observe signatures, in the high-latitude ionosphere, of magnetospheric ULF waves. A type of wave has been identified which exhibits no simultaneous ground magnetic signature. They can be subdivided into two classes which occur in the dawn and dusk local time sectors respectively. They generally have frequencies greater than the resonance fundamentals of local field lines. It is suggested that these may be the signatures of high-m ULF waves where the ground magnetic signature has been strongly attenuated as a result of the scale size of the waves. The dawn population demonstrate similarities to a type of magnetospheric wave known as giant (Pg) pulsations which tend to be resonant at higher harmonics on magnetic field lines. In contrast, the waves occurring in the dusk sector are believed to be related to the storm-time Pc5s previously reported in VHF radar data. Dst measurements support these observations by indicating that the dawn and dusk classes of waves occur respectively during geomagnetically quiet and more active intervals.Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions) · Magnetospheric physics (MHD waves and instabilities)


2015 ◽  
Vol 33 (11) ◽  
pp. 1457-1467 ◽  
Author(s):  
K. Tatsuta ◽  
Y. Hobara ◽  
S. Pal ◽  
M. Balikhin

Abstract. We investigate quantitatively the effect of geomagnetic storms on the sub-ionospheric VLF/LF (Very Low Frequency/Low Frequency) propagations for different latitudes based on 2-year nighttime data from Japanese VLF/LF observation network. Three statistical parameters such as average signal amplitude, variability of the signal amplitude, and nighttime fluctuation were calculated daily for 2 years for 16–21 independent VLF/LF transmitter–receiver propagation paths consisting of three transmitters and seven receiving stations. These propagation paths are suitable to simultaneously study high-latitude, low-mid-latitude and mid-latitude D/E-region ionospheric properties. We found that these three statistical parameters indicate significant anomalies exceeding at least 2 times of their standard deviation from the mean value during the geomagnetic storm time period in the high-latitude paths with an occurrence rate of anomaly between 40 and 50 % presumably due to the auroral energetic electron precipitation. The mid-latitude and low-mid-latitude paths have a smaller influence from the geomagnetic activity because of a lower occurrence rate of anomalies even during the geomagnetically active time period (from 20 to 30 %). The anomalies except geomagnetic storm periods may be caused by atmospheric and/or lithospheric origins. The statistical occurrence rates of ionospheric anomalies for different latitudinal paths during geomagnetic storm and non-storm time periods are basic and important information not only to identify the space weather effects toward the lower ionosphere depending on the latitudes but also to separate various external physical causes of lower ionospheric disturbances.


Sign in / Sign up

Export Citation Format

Share Document