Dual sensing of glutathione and acidic pH values by using MnO2 nanosheets and 3-acetyl-7-hydroxy-2H-chromen-2-one as a fluorescent pH probe

2019 ◽  
Vol 186 (8) ◽  
Author(s):  
Lei Fu ◽  
Yanlin Du ◽  
Zhenxi Zhang ◽  
Haiyan Sun ◽  
Aixian Zheng ◽  
...  
2018 ◽  
Vol 69 (8) ◽  
pp. 2304-2305
Author(s):  
Oana Ruxandra Iana ◽  
Dragos Cristian Stefanescu ◽  
Viorel Zainea ◽  
Razvan Hainarosie

Variable pH values for skin have been reported in the literature, all within the acidic range, varying from 4.0 up to 7. 0. The origin of the acidic pH remains conjectural, and several factors have been incriminated with this role, such as eccrine and sebaceous secretions as well as proton pumps. Keeping low levels of pH prevents microbial dispersal as well as multiplication. The skin in the external auditory canal is also covered with this acidic mantle with antimicrobial value. Changes of pH in the external ear can lead to acute otitis externa. This condition is defined by the inflammation and infection of the cutaneous and subcutaneous tissues of the external auditory canal. 10% of the world�s population may suffer from acute otitis externa at least once in their lifetime. This paper aims to consolidate the relevance of an acidic pH in the healthy external ear and its relation to the pathogenesis and treatment of otitis externa through a prospective and interventional clinical study on 80 patients who presented to the outpatient department at Prof. Dr D. Hociota ENT Institute in Buch


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 489 ◽  
Author(s):  
Kimberly Sánchez-Alonzo ◽  
Cristian Parra-Sepúlveda ◽  
Samuel Vega ◽  
Humberto Bernasconi ◽  
Víctor L. Campos ◽  
...  

Yeasts can adapt to a wide range of pH fluctuations (2 to 10), while Helicobacter pylori, a facultative intracellular bacterium, can adapt to a range from pH 6 to 8. This work analyzed if H. pylori J99 can protect itself from acidic pH by entering into Candida albicans ATCC 90028. Growth curves were determined for H. pylori and C. albicans at pH 3, 4, and 7. Both microorganisms were co-incubated at the same pH values, and the presence of intra-yeast bacteria was evaluated. Intra-yeast bacteria-like bodies were detected using wet mounting, and intra-yeast binding of anti-H. pylori antibodies was detected using immunofluorescence. The presence of the H. pylori rDNA 16S gene in total DNA from yeasts was demonstrated after PCR amplification. H. pylori showed larger death percentages at pH 3 and 4 than at pH 7. On the contrary, the viability of the yeast was not affected by any of the pHs evaluated. H. pylori entered into C. albicans at all the pH values assayed but to a greater extent at unfavorable pH values (pH 3 or 4, p = 0.014 and p = 0.001, respectively). In conclusion, it is possible to suggest that H. pylori can shelter itself within C. albicans under unfavorable pH conditions.


2009 ◽  
Vol 19 (20) ◽  
pp. 5825-5828 ◽  
Author(s):  
Alessio Innocenti ◽  
Silvia Pastorekova ◽  
Jaromir Pastorek ◽  
Andrea Scozzafava ◽  
Giuseppina De Simone ◽  
...  

Author(s):  
Liu Yang ◽  
Yan Liu ◽  
Ping Li ◽  
Yu-Long Liu ◽  
Xiao-Min Liang ◽  
...  

2018 ◽  
Vol 74 (5) ◽  
pp. 480-489 ◽  
Author(s):  
Marina Plaza-Garrido ◽  
M. Carmen Salinas-Garcia ◽  
Ana Camara-Artigas

The structure of orthorhombic lysozyme has been obtained at 298 K and pH 4.5 using sodium chloride as the precipitant and in the presence of sodium phosphate at a concentration as low as 5 mM. Crystals belonging to space groupP212121(unit-cell parametersa= 30,b= 56,c= 73 Å, α = β = γ = 90.00°) diffracted to a resolution higher than 1 Å, and the high quality of these crystals permitted the identification of a phosphate ion bound to Arg14 and His15. The binding of this ion produces long-range conformational changes affecting the loop containing Ser60–Asn74. The negatively charged phosphate ion shields the electrostatic repulsion of the positively charged arginine and histidine residues, resulting in higher stability of the phosphate-bound lysozyme. Additionally, a low-humidity orthorhombic variant was obtained at pH 4.5, and comparison with those previously obtained at pH 6.5 and 9.5 shows a 1.5 Å displacement of the fifth α-helix towards the active-site cavity, which might be relevant to protein function. Since lysozyme is broadly used as a model protein in studies related to protein crystallization and amyloid formation, these results indicate that the interaction of some anions must be considered when analysing experiments performed at acidic pH values.


1972 ◽  
Vol 129 (5) ◽  
pp. 1131-1138 ◽  
Author(s):  
F. Auricchio ◽  
L. Mollica ◽  
A. Liguori

Inactivation of tyrosine aminotransferase induced in vivo by triamcinolone was studied in a homogenate incubated at neutral pH values. The integrity and the presence of subcellular particles together with a compartment of acidic pH are necessary for inactivation of tyrosine aminotransferase. It is suggested that tyrosine aminotransferase is inactivated inside lysosomes. The system responsible for inactivation of tyrosine aminotransferase was partially purified and identified with lysosomal cathepsins B and B1. Inactivation of tyrosine aminotransferase in liver slices is controlled by the amino acid concentration and strongly stimulated by cysteine. 3,3′,5-Tri-iodo-l-thyronine reversibly and strongly decreases the rate of inactivation of tyrosine aminotransferase. The effect is not due to an increased rate of tyrosine aminotransferase synthesis.


1992 ◽  
Vol 1 (1) ◽  
pp. 81-84 ◽  
Author(s):  
JM Clochesy

BACKGROUND: A new pH probe-tipped nasogastric sump tube is available to monitor gastric pH conveniently. This study assesses its ability to measure gastric acidity accurately. METHODS: The accuracy of the combined pH probe nasogastric tube (GrapHprobe ST) was determined by comparing it with standard buffer solutions (pH 1.0, 2.0, 4.0 and 7.0) traceable to the National Institute of Standards and Technology. Gastric pH values obtained were compared with values obtained using indicator paper and a calibrated glass electrode on gastric aspirate. RESULTS: Although statistically significant differences were found in vitro between the pH of three of the buffer solutions and the pH values obtained by the nasogastric sump tube, the results were within 0.5 pH unit. When rounded to the nearest pH unit, all values were the same as the buffer solutions. No significant difference was found in the pH values obtained during in vivo testing. CONCLUSIONS: The GrapHprobe ST measured gastric pH within reasonable accuracy in this small series.


1997 ◽  
Vol 17 (10) ◽  
pp. 5960-5967 ◽  
Author(s):  
F A Mühlschlegel ◽  
W A Fonzi

Deletion of PHR1, a pH-regulated gene of Candida albicans, results in pH-conditional defects in growth, morphogenesis, and virulence evident at neutral to alkaline pH but absent at acidic pH. Consequently, we searched for a functional homolog of PHR1 active at low pH. This resulted in the isolation of a second pH-regulated gene, designated PHR2. The expression of PHR2 was inversely related to that of PHR1, being repressed at pH values above 6 and progressively induced at more acidic pH values. The predicted amino acid sequence of the PHR2 protein, Phr2p, was 54% identical to that of Phr1p. A PHR2 null mutant exhibited pH-conditional defects in growth and morphogenesis analogous to those of PHR1 mutants but manifest at acid rather than alkaline pH values. Engineered expression of PHR1 at acid pH in a PHR2 mutant strain and PHR2 at alkaline pH in a PHR1 mutant strain complemented the defects in the opposing mutant. Deletion of both PHR1 and PHR2 resulted in a strain with pH-independent, constitutive growth and morphological defects. These results indicate that PHR1 and PHR2 represent a novel pH-balanced system of functional homologs required for C. albicans to adapt to environments of diverse pH.


2016 ◽  
Vol 183 (5) ◽  
pp. 1779-1786 ◽  
Author(s):  
Huihui Li ◽  
Shuqiang Zhu ◽  
Ting Cheng ◽  
Shuxia Wang ◽  
Bin Zhu ◽  
...  

2010 ◽  
Vol 76 (19) ◽  
pp. 6485-6493 ◽  
Author(s):  
Benjamin L. Turner

ABSTRACT Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.


Sign in / Sign up

Export Citation Format

Share Document