Influence of Polarity and Ionic Strength on Intramolecular Spin Exchange in a Short Nitroxide Biradical, Containing Sulphur Atom in the Bridge

2018 ◽  
Vol 49 (10) ◽  
pp. 1059-1073 ◽  
Author(s):  
A. I. Kokorin ◽  
B. Y. Mladenova-Kattnig ◽  
O. I. Gromov ◽  
A. A. Shubin ◽  
R. B. Zaripov ◽  
...  
Author(s):  
F. Thoma ◽  
TH. Koller

Under a variety of electron microscope specimen preparation techniques different forms of chromatin appearance can be distinguished: beads-on-a-string, a 100 Å nucleofilament, a 250 Å fiber and a compact 300 to 500 Å fiber.Using a standardized specimen preparation technique we wanted to find out whether there is any relation between these different forms of chromatin or not. We show that with increasing ionic strength a chromatin fiber consisting of a row of nucleo- somes progressively folds up into a solenoid-like structure with a diameter of about 300 Å.For the preparation of chromatin for electron microscopy the avoidance of stretching artifacts during adsorption to the carbon supports is of utmost importance. The samples are fixed with 0.1% glutaraldehyde at 4°C for at least 12 hrs. The material was usually examined between 24 and 48 hrs after the onset of fixation.


Author(s):  
J.S. Wall ◽  
V. Maridiyan ◽  
S. Tumminia ◽  
J. Hairifeld ◽  
M. Boublik

The high contrast in the dark-field mode of dedicated STEM, specimen deposition by the wet film technique and low radiation dose (1 e/Å2) at -160°C make it possible to obtain high resolution images of unstained freeze-dried macromolecules with minimal structural distortion. Since the image intensity is directly related to the local projected mass of the specimen it became feasible to determine the molecular mass and mass distribution within individual macromolecules and from these data to calculate the linear density (M/L) and the radii of gyration.2 This parameter (RQ), reflecting the three-dimensional structure of the macromolecular particles in solution, has been applied to monitor the conformational transitions in E. coli 16S and 23S ribosomal RNAs in solutions of various ionic strength.In spite of the differences in mass (550 kD and 1050 kD, respectively), both 16S and 23S RNA appear equally sensitive to changes in buffer conditions. In deionized water or conditions of extremely low ionic strength both appear as filamentous structures (Fig. la and 2a, respectively) possessing a major backbone with protruding branches which are more frequent and more complex in 23S RNA (Fig. 2a).


Author(s):  
S. Trachtenberg ◽  
D. J. DeRosier

The bacterial cell is propelled through the liquid environment by means of one or more rotating flagella. The bacterial flagellum is composed of a basal body (rotary motor), hook (universal coupler), and filament (propellor). The filament is a rigid helical assembly of only one protein species — flagellin. The filament can adopt different morphologies and change, reversibly, its helical parameters (pitch and hand) as a function of mechanical stress and chemical changes (pH, ionic strength) in the environment.


Author(s):  
Y.G. Wang ◽  
H.Q. Ye ◽  
K.H. Kuo

A synthetic compound Ca4Al6SO16 (usually abbreviated as C4A3S) obtained by mixing CaO, A12O3 and CaSO4 powders and finally sintered at 1380°C is a cement with excellent hydraulicity and greatly expanding in application. It is hydralysed rapidly by water to form predominatly calcium aluminate hydrates and therefore unlikly to occur naturally, although structurally it may be regarded as an end member of the sodalite-hauynite series of naturally occuring minerals. C4A3S has a cubic structure with ao=9.19Å and space group . Fig.1 is the projection viewed down axis, in which there are two sets of 8C position in , namely CaI and CaII, occupied by the calcium atoms, respectively, and the ratio of occupations in these two sets of positions is about 3:1. This suggests that the calcium atoms can freely occupy these sites in various degrees and usually they almost locates on the CaI positions. A through-focus series of the lattice images were found in good agreement with the simulated ones. Each bright spot in the image taken at Scherzer defocus correspounds to a colunm of sulphur atom in the structural model (Fig.1).


Author(s):  
Y.D. Yu ◽  
R. Guan ◽  
K.H. Kuo ◽  
H. Hashimoto

We have indicated that the lighter atoms such as oxygen in Cu2O can be observed at the specimen with optimal thicknesses based on the dynamic effect of electron diffraction(1). This rule in principle should hold good for the imaging of other lighter atoms such as sulphur atom in Cu2S. However, this point of view needs further experimentally confirm because up to now only oxygen atoms have been observed in Cu2O and a series of new suboxides of copper and nickel (2). In addition, the sulphur atom is much heavier than oxygen one though is still lighter than copper atom. In the present report we provide such a confirmation.The crystallites of Cu2S shown in Fig.l were obtained by sulfurizing at 300°C of the copper thin film which was sealed in a glass tube with mg sulphur left on the tube wall in a vacuum of about 10-2 Pa. The energy dispersive spectrocscopy analysis indicated that they are the sulfides and the electron diffraction analysis indicated they have anti-fluorite structure.


1985 ◽  
Vol 10 (6) ◽  
pp. 645-657 ◽  
Author(s):  
W. Happer
Keyword(s):  

1988 ◽  
Vol 85 ◽  
pp. 523-527
Author(s):  
M.M. Zuleika ◽  
Palhares SILVA ◽  
Ernesto Rafael GONZALEZ ◽  
Luis Alberto AVACA ◽  
Artur de Jesus MOTHEO

1987 ◽  
Vol 58 (04) ◽  
pp. 1064-1067 ◽  
Author(s):  
K Kodama ◽  
B Pasche ◽  
P Olsson ◽  
J Swedenborg ◽  
L Adolfsson ◽  
...  

SummaryThe mode of F Xa inhibition was investigated on a thromboresistant surface with end-point attached partially depoly-merized heparin of an approximate molecular weight of 8000. Affinity chromatography revealed that one fourth of the heparin used in surface coating had high affinity for antithrombin III (AT). The heparin surface adsorbed AT from both human plasma and solutions of purified AT. By increasing the ionic strength in the AT solution the existence of high and low affinity sites could be shown. The uptake of AT was measured and the density of available high and low affinity sites was found to be in the range of 5 HTid 11 pic.omoles/cmf, respectively Thus the estimated density of biologically active high and low ailmity heparm respectively would be 40 and 90 ng/cm2 The heparin coating did not take up or exert F Xa inhibition by itself. With AT adsorbed on both high and low affinity heparin the surface had the capacity to inhibit several consecutive aliquots of F Xa exposed to the surface. When mainly high affinity sites were saturated with AT the inhibition capacity was considerably lower. Tt was demonstrated that the density of AT on both high and low affinity heparin determines the F Xa inhibition capacity whereas the amount of AT on high affinity sites limits the rate of the reaction. This implies that during the inhibition of F Xa there is a continuous surface-diffusion of AT from sites of a lower class to the high affinity sites where the F Xa/AT complex is formed and leaves the surface. The ability of the immobilized heparin to catalyze inhibition of F Xa is likely to be an important component for the thromboresistant properties of a heparin coating with non-compromized AT binding sequences.


Sign in / Sign up

Export Citation Format

Share Document