scholarly journals Oxygenation Status of Malignant Tumors vs. Normal Tissues: Critical Evaluation and Updated Data Source Based on Direct Measurements with pO2 Microsensors

Author(s):  
Peter Vaupel ◽  
Ann Barry Flood ◽  
Harold M. Swartz

AbstractImmature and chaotic vascular networks with critically increased intervascular distances are characteristic features of malignant tumors. Spatial and temporal heterogeneities of blood flow and associated availabilities of O2, together with limited diffusive O2 transport, and -in some patients- anemia, obligatorily lead to tumor hypoxia (= critically reduced O2 levels) on macro- and microscopic scales. This detrimental condition, recently classified as a key hallmark of malignant growth, acts (a) as a barrier in most antitumor treatments, and (b) leads to malignant progression based on hypoxia-induced changes of the genome, transcriptome, and proteome, and finally to poor patient survival. This knowledge is, to a great extent, based on the systematic detection of tumor hypoxia in the clinical setting since the late 1980s. Precise assessment of the tumor oxygenation status was made possible using minimally invasive polarographic pO2 microsensors in a series of research projects. To assess tumor hypoxia in the clinical setting, it is highly desirable to use technologies with (a) high spatial and temporal resolutions, (b) the capability to judge the severity of tumor hypoxia, (c) to allow mapping of pO2 of the whole tumor mass, and (d) to enable serial investigations in order to verify treatment-related changes in tumor hypoxia. Selection and treatment of cancer patients according to their individual tumor oxygenation/hypoxia status for intensified and/or personalized hypoxia-targeted treatment strategies should be the ultimate goal.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Gibin Powathil ◽  
Mohammad Kohandel ◽  
Michael Milosevic ◽  
Siv Sivaloganathan

Tumor oxygenation status is considered one of the important prognostic markers in cancer since it strongly influences the response of cancer cells to various treatments; in particular, to radiation therapy. Thus, a proper and accurate assessment of tumor oxygen distribution before the treatment may highly affect the outcome of the treatment. The heterogeneous nature of tumor hypoxia, mainly influenced by the complex tumor microenvironment, often makes its quantification very difficult. The usual methods used to measure tumor hypoxia are biomarkers and the polarographic needle electrode. Although these techniques may provide an acceptable assessment of hypoxia, they are invasive and may not always give a spatial distribution of hypoxia, which is very useful for treatment planning. An alternative method to quantify the tumor hypoxia is to use theoretical simulations with the knowledge of tumor vasculature. The purpose of this paper is to model tumor hypoxia using a known spatial distribution of tumor vasculature obtained from image data, to analyze the accuracy of polarographic needle electrode measurements in quantifying hypoxia, to quantify the optimum number of measurements required to satisfactorily evaluate the tumor oxygenation status, and to study the effects of hypoxia on radiation response. Our results indicate that the model successfully generated an accurate oxygenation map for tumor cross-sections with known vascular distribution. The method developed here provides a way to estimate tumor hypoxia and provides guidance in planning accurate and effective therapeutic strategies and invasive estimation techniques. Our results agree with the previous findings that the needle electrode technique gives a good estimate of tumor hypoxia if the sampling is done in a uniform way with 5-6 tracks of 20–30 measurements each. Moreover, the analysis indicates that the accurate measurement of oxygen profile can be very useful in determining right radiation doses to the patients.


2000 ◽  
Vol 93 (3) ◽  
pp. 449-454 ◽  
Author(s):  
Hans J. J. A. Bernsen ◽  
Paul F. J. W. Rijken ◽  
Hans Peters ◽  
James A. Raleigh ◽  
Judith W. M. Jeuken ◽  
...  

Object. The development of hypoxia in human gliomas is closely related to functional vasculature and the presence of hypoxia has important biological and therapeutic consequences. Assessment of hypoxia is necessary to understand its role in treatment response and to evaluate treatment strategies to improve tumor oxygenation. In this study, the authors report findings of their analysis of the degree of hypoxia in relation to other vascular parameters in a human intracerebral glioma xenograft.Methods. In sections of tumor, hypoxic regions were identified immunohistochemically by using the hypoxic marker pimonidazole. The S-phase marker bromodeoxyuridine was used to detect cell proliferation, and the perfusion marker Hoechst 33342 was used to delineate perfused vessels. Vascular structures were stained with an endothelial marker.Hypoxic tumor regions were clearly present in this human intracerebral glioma model. Hypoxic areas were usually found in nonperfused regions, whereas tumor cell proliferation was especially marked in perfused tumor areas. Furthermore, by using in situ hybridization the authors identified infiltrating tumor cells in the normal brain. This feature is often observed in gliomas in patients.Conclusions. This model is a representative human glioma model that provides the researcher with the opportunity to analyze the relationship between the degree of hypoxia and vascular parameters, as well as to examine the effects of treatments aimed at modification of the oxygenation status of a tumor.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3932
Author(s):  
Dannel Yeo ◽  
Laura Castelletti ◽  
Nico van Zandwijk ◽  
John E. J. Rasko

Malignant pleural mesothelioma (MPM) is an aggressive cancer with limited treatment options and poor prognosis. MPM originates from the mesothelial lining of the pleura. Mesothelin (MSLN) is a glycoprotein expressed at low levels in normal tissues and at high levels in MPM. Many other solid cancers overexpress MSLN, and this is associated with worse survival rates. However, this association has not been found in MPM, and the exact biological role of MSLN in MPM requires further exploration. Here, we discuss the current research on the diagnostic and prognostic value of MSLN in MPM patients. Furthermore, MSLN has become an attractive immunotherapy target in MPM, where better treatment strategies are urgently needed. Several MSLN-targeted monoclonal antibodies, antibody–drug conjugates, immunotoxins, cancer vaccines, and cellular therapies have been tested in the clinical setting. The biological rationale underpinning MSLN-targeted immunotherapies and their potential to improve MPM patient outcomes are reviewed.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 795-804
Author(s):  
Junjie Hang ◽  
Feifei Wei ◽  
Zhiying Yan ◽  
Xianming Zhang ◽  
Kequn Xu ◽  
...  

Abstract Purpose Colon cancer is one of the malignant tumors that threatens human health. miR-510 was demonstrated to play roles in the progression of various cancers; its dysregulation was speculated to be associated with the development of colon cancer. Methods One hundred and thirteen colon cancer patients participated in this research. With the help of RT-qPCR, the expression of miR-510 in collected tissues and cultured cells was analyzed. The association between miR-510 expression level and clinical features and prognosis of patients was evaluated. Moreover, the effects of miR-510 on cell proliferation, migration, and invasion of colon cancer were assessed by CCK8 and Transwell assay. Results miR-510 significantly upregulated in colon cancer tissues and cell lines relative to the adjacent normal tissues and colonic cells. The expression of miR-510 was significantly associated with the TNM stage and poor prognosis of patients, indicating miR-510 was involved in the disease progression and clinical prognosis of colon cancer. Additionally, the upregulation of miR-510 significantly promoted cell proliferation, migration, and invasion of colon cancer, while its knockdown significantly inhibited these cellular processes. SRCIN 1 was the direct target of miR-510 during its promoted effect on the development of colon cancer. Conclusion The upregulation of miR-510 acts as an independent prognostic indicator and a tumor promoter by targeting SRCIN 1 in colon cancer, which provides novel therapeutic strategies for colon cancer.


2020 ◽  
Author(s):  
Xialin Luo ◽  
Jingjing Liu ◽  
Huaizhi Wang ◽  
Haitao Lu

AbstractPurposeTo improve clinical diagnosis and enhance therapeutic outcome, we figure out to identify and validate metabolite biomarkers from the plasma samples of patients with pancreatic cancer that can easily, sensitively and efficiently diagnose the onsite progression, and metastasis of the disease.Experimental DesignWe employed the newly developed precision-targeted metabolomics method to validate that many differential metabolites have the capacity to markedly distinguish patients with pancreatic cancer from healthy controls. To further enhance the specificity and selectivity of metabolite biomarkers, a dozen tumor tissues from PC patients and paired normal tissues were used to clinically validate the biomarker performance.ResultsWe eventually verified five new metabolite biomarkers in plasma (creatine, inosine, beta-sitosterol, sphinganine and glycocholic acid), which can be used to readily diagnose pancreatic cancer in a clinical setting. Excitingly, we proposed a panel biomarker by integrating these five individual metabolites into one pattern, demonstrating much higher accuracy and specificity to precisely diagnose pancreatic cancer than conventional biomarkers (CA125, CA19-9, CA242 and CEA); Moreover, we characterized succinic acid and gluconic acid as having a great capability to monitor the progression and metastasis of pancreatic cancer at different stages.ConclusionsTaken together, this metabolomics method was used to identify and validate metabolite biomarkers that can precisely and sensitively diagnose the onsite progression and metastasis of pancreatic cancer in a clinical setting. Furthermore, such effort should leave clinicians with the correct time frame to facilitate early and efficiently therapeutic interventions, which could largely improve the five-year survival rate of PC patients.


2021 ◽  
Vol 23 (1) ◽  
pp. 88-92
Author(s):  
Inna P. Ganshina ◽  
Kristina A. Ivanova ◽  
Olga O. Gordeeva ◽  
Aleksandr V. Arkhipov ◽  
Liudmila G. Zhukova

Triple-negative breast cancer is 1024% of all cases of breast cancer and is characterized by the absence of estrogen, progesterone, and HER-2 receptors in the tumor. The therapy of this illness is a difficult clinical case. In contrast to hormone-positive and HER-2-positive phenotypes, in which we successfully use targeted drugs (antiestrogens and anti-HER-2 drugs), for triple-negative breast cancer we have not had such targets for a long time. Thus, despite the impressive results of immunotherapy of triple-negative breast cancer, there remains a fairly large group of patients with negative PD-L1 status, for whom it is necessary to develop other treatment strategies. One of the approaches in the treatment of malignant tumors includes not the impact on tumor cells, but the process of angiogenesis. Antiangiogenic drugs have positively proven themselves in the treatment of a large number of malignant tumors but are underestimated for breast cancer (including triple-negative phenotype). The use of bevacizumab in combinations with cytostatic drugs in breast cancer therapy (including triple-negative breast cancer) has been studied in a large number of clinical trials but was undeservedly forgotten in some countries due to the revoked FDA registration. This review presents the role of bevacizumab in the treatment of patients with triple-negative breast cancer and suggests the conditions when the administration of this drug is justified and leads to better results.


Sign in / Sign up

Export Citation Format

Share Document