Amino acid substitutions in an alpha-helical antimicrobial arachnid peptide affect its chemical properties and biological activity towards pathogenic bacteria but improves its therapeutic index

Amino Acids ◽  
2009 ◽  
Vol 40 (1) ◽  
pp. 61-68 ◽  
Author(s):  
A. Rodríguez ◽  
E. Villegas ◽  
H. Satake ◽  
L. D. Possani ◽  
Gerardo Corzo
2020 ◽  
Author(s):  
Yunier Rodríguez‐Álvarez ◽  
Ania Cabrales‐Rico ◽  
David Diago‐Abreu ◽  
Elianys Correa‐Arguelles ◽  
Osvaldo Reyes‐Acosta ◽  
...  

2016 ◽  
Vol 52 (9) ◽  
pp. 1891-1894 ◽  
Author(s):  
Zsófia Hegedüs ◽  
Ildikó Makra ◽  
Norbert Imre ◽  
Anasztázia Hetényi ◽  
István M. Mándity ◽  
...  

The adjustment of β-sheet content by β-amino acid substitutions revealed β-sheet folding-dependent biological activity.


2021 ◽  
Vol 22 (12) ◽  
pp. 6631
Author(s):  
Àngel Oliveras ◽  
Luís Moll ◽  
Gerard Riesco-Llach ◽  
Arnau Tolosa-Canudas ◽  
Sergio Gil-Caballero ◽  
...  

From a previous collection of lipopeptides derived from BP100, we selected 18 sequences in order to improve their biological profile. In particular, analogues containing a D-amino acid at position 4 were designed, prepared, and tested against plant pathogenic bacteria and fungi. The biological activity of these sequences was compared with that of the corresponding parent lipopeptides with all L-amino acids. In addition, the influence of the length of the hydrophobic chain on the biological activity was evaluated. Interestingly, the incorporation of a D-amino acid into lipopeptides bearing a butanoyl or a hexanoyl chain led to less hemolytic sequences and, in general, that were as active or more active than the corresponding all L-lipopeptides. The best lipopeptides were BP475 and BP485, both incorporating a D-Phe at position 4 and a butanoyl group, with MIC values between 0.8 and 6.2 µM, low hemolysis (0 and 24% at 250 µM, respectively), and low phytotoxicity. Characterization by NMR of the secondary structure of BP475 revealed that the D-Phe at position 4 disrupts the α-helix and that residues 6 to 10 are able to fold in an α-helix. This secondary structure would be responsible for the high antimicrobial activity and low hemolysis of this lipopeptide.


2018 ◽  
Vol 84 (15) ◽  
Author(s):  
Mengxin Geng ◽  
Leif Smith

ABSTRACTMutacin 1140 belongs to the epidermin family of type AI lantibiotics. This family has a broad spectrum of activity against Gram-positive bacteria. The binding of mutacin 1140 to lipid II leads to the inhibition of cell wall synthesis. Pharmacokinetic experiments with type AI lantibiotics are generally discouraging for clinical applications due to the short half-life of these compounds. The unprotected dehydrated and protease-susceptible residues outside the lanthionine rings may play a role in the short half-life in physiological settings. Previous mutagenesis work on mutacin 1140 has been limited to the lanthionine-forming residues, the C-terminally decarboxylated residue, and single amino acid substitutions at residues Phe1, Trp4, Dha5, and Arg13. To study the importance of the dehydrated (Dha5 and Dhb14) and protease-susceptible (Lys2 and Arg13) residues within mutacin 1140 for stability and bioactivity, each of these residues was evaluated for its impact on production and inhibitory activity. More than 15 analogs were purified, enabling direct comparison of the activities against a select panel of Gram-positive bacteria. The efficiency of the posttranslational modification (PTM) machinery of mutacin 1140 is highly restricted on its substrate. Analogs in the various intermediate stages of PTMs were observed as minor products following single point mutations at the 2nd, 5th, 13th, and 14th positions. The combination of alanine substitutions at the Dha5 and Dhb14 positions abolished mutacin 1140 production, while the production was restored by substitution of a Gly residue at one of these positions. Analogs with improved activity, productivity, and proteolytic stability were identified.IMPORTANCEOur findings show that the efficiency of mutacin 1140 PTMs is highly dependent on the core peptide sequence. Analogs in various intermediate stages of PTMs can be transported by the bacterium, which indicates that PTMs and transport are finely tuned for the native mutacin 1140 core peptide. Only certain combinations of amino acid substitutions at the Dha5 and Dhb14 dehydrated residue positions were tolerated. Observation of glutamylated core peptide analogs shows that dehydrations occur in a glutamate-dependent manner. Interestingly, mutations at positions outside rings A and B, the lipid II binding domain, would interfere with lipid II binding. Purified mutacin 1140 analogs have various activities and selectivities against different genera of bacteria, supporting the effort to generate analogs with higher specificity against pathogenic bacteria. The discovery of analogs with improved inhibitory activity against pathogenic bacteria, increased stability in the presence of protease, and higher product yields may promote the clinical development of this unique antimicrobial compound.


2016 ◽  
Author(s):  
Qinhu Wang ◽  
Cong Jiang ◽  
Huiquan Liu ◽  
Jin-Rong Xu

ABSTRACTADAR-mediated A-to-I RNA editing is a well-known RNA modification mechanism in metazoans that can cause nonsynonymous changes leading to amino acid substitutions. Despite a few cases that are clearly functionally important, the biological significance of most nonsynonymous editing sites in animals remains largely unknown. Recently, genome-wide A-to-I editing was found to occur mainly in the coding regions and specifically during sexual reproduction in the wheat scab fungus Fusarium graminearum that lacks ADAR orthologs. In this study, we found that both the frequency and editing level of nonsynonymous editing is significantly higher than those of synonymous editing, suggesting that nonsynonymous editing is generally beneficial and under positive selection in F. graminearum. We also showed that nonsynonymous editing favorably targets functionally more important and more conserved genes, but at less-conserved sites, indicating that the RNA editing system is adapted to fine turn protein functions by avoiding potentially deleterious editing events. Furthermore, nonsynonymous editing in F. graminearum was found to be under codon-specific selection and most types of codon changes tend to cause amino acid substitutions with distinct physical-chemical properties and smaller molecular weights, which likely have more profound impact on protein structures and functions. In addition, we found that the most abundant synonymous editing of leucine codons is adapted to fine turn the protein expression by increasing codon usage bias. These results clearly show that A-to-I RNA editing in fungi is generally adaptive and recoding RNA editing may play an important role in sexual development in filamentous ascomycetes.


1992 ◽  
Vol 68 (06) ◽  
pp. 672-677 ◽  
Author(s):  
Hitoshi Yahara ◽  
Keiji Matsumoto ◽  
Hiroyuki Maruyama ◽  
Tetsuya Nagaoka ◽  
Yasuhiro Ikenaka ◽  
...  

SummaryTissue-type plasminogen activator (t-PA) is a fibrin-specific agent which has been used to treat acute myocardial infarction. In an attempt to clarify the determinants for its rapid clearance in vivo and high affinity for fibrin clots, we produced five variants containing amino acid substitutions in the finger domain, at amino acid residues 7–9, 10–14, 15–19, 28–33, and 37–42. All the variants had a prolonged half-life and a decreased affinity for fibrin of various degrees. The 37–42 variant demonstrated about a 6-fold longer half-life with a lower affinity for fibrin. Human plasma clot lysis assay estimated the fibrinolytic activity of the 37–42 variant to be 1.4-fold less effective than that of the wild-type rt-PA. In a rabbit jugular vein clot lysis model, doses of 1.0 and 0.15 mg/kg were required for about 70% lysis in the wild-type and 37–42 variant, respectively. Fibrinogen was degraded only when the wild-type rt-PA was administered at a dose of 1.0 mg/kg. These findings suggest that the 37–42 variant can be employed at a lower dosage and that it is a more fibrin-specific thrombolytic agent than the wild-type rt-PA.


Sign in / Sign up

Export Citation Format

Share Document