scholarly journals Selective deletion of the membrane-bound colony stimulating factor 1 isoform leads to high bone mass but does not protect against estrogen-deficiency bone loss

2011 ◽  
Vol 30 (4) ◽  
pp. 408-418 ◽  
Author(s):  
Gang-Qing Yao ◽  
Jian-Jun Wu ◽  
Nancy Troiano ◽  
Mei-Ling Zhu ◽  
Xiao-Yan Xiao ◽  
...  
iScience ◽  
2021 ◽  
pp. 102224
Author(s):  
Juliane Lehmann ◽  
Sylvia Thiele ◽  
Ulrike Baschant ◽  
Tilman D. Rachner ◽  
Christof Niehrs ◽  
...  

2019 ◽  
Vol 317 (5) ◽  
pp. C969-C982 ◽  
Author(s):  
H. Allison ◽  
L. M. McNamara

Osteoporotic bone loss and fracture have long been regarded to arise upon depletion of circulating estrogen, which increases osteoclastogenesis and bone resorption. Osteoblasts from human osteoporotic patients also display deficient osteogenic responses to mechanical loading. However, while osteoblasts play an important role in regulating osteoclast differentiation, how this relationship is affected by estrogen deficiency is unknown. This study seeks to determine how mechanically stimulated osteoblasts regulate osteoclast differentiation and matrix degradation under estrogen deficiency. Here, we report that osteoblast-induced osteoclast differentiation (indicated by tartrate-resistant acid phosphatase, cathepsin K, and nuclear factor of activated T cells, cytoplasmic 1) and matrix degradation were inhibited by estrogen treatment and mechanical loading. However, estrogen-deficient osteoblasts exacerbated osteoclast formation and matrix degradation in conditioned medium and coculture experiments. This was accompanied by higher expression of cyclooxygenase-2 and macrophage colony-stimulating factor, but not osteoprotegerin, by osteoblasts under estrogen deficiency. Interestingly, this response was exacerbated under conditions that block the Rho-Rho-associated protein kinase signaling pathway. This study provides an important, but previously unrecognized, insight into bone loss in postmenopausal osteoporosis, whereby estrogen-deficient osteoblasts fail to produce inhibitory osteoprotegerin after mechanical stimulation but upregulate macrophage colony-stimulating factor and cyclooxygenase-2 expression and, thus, leave osteoclast activity unconstrained.


2019 ◽  
Vol 116 (52) ◽  
pp. 26808-26815 ◽  
Author(s):  
Li Sun ◽  
Daria Lizneva ◽  
Yaoting Ji ◽  
Graziana Colaianni ◽  
Elina Hadelia ◽  
...  

The primitive neurohypophyseal nonapeptide oxytocin (OXT) has established functions in parturition, lactation, appetite, and social behavior. We have shown that OXT has direct actions on the mammalian skeleton, stimulating bone formation by osteoblasts and modulating the genesis and function of bone-resorbing osteoclasts. We deleted OXT receptors (OXTRs) selectively in osteoblasts and osteoclasts usingCol2.3CreandAcp5Cremice, respectively. Both male and femaleCol2.3Cre+:Oxtrfl/flmice recapitulate the low-bone mass phenotype ofOxtr+/−mice, suggesting that OXT has a prominent osteoblastic action in vivo. Furthermore, abolishment of the anabolic effect of estrogen inCol2.3Cre+:Oxtrfl/flmice suggests that osteoblastic OXTRs are necessary for estrogen action. In addition, the high bone mass inAcp5Cre+:Oxtrfl/flmice indicates a prominent action of OXT in stimulating osteoclastogenesis. In contrast, we found that in pregnant and lactatingCol2.3Cre+:Oxtrfl/flmice, elevated OXT inhibits bone resorption and rescues the bone loss otherwise noted during pregnancy and lactation. However, OXT does not contribute to ovariectomy-induced bone loss. Finally, we show that OXT acts directly on OXTRs on adipocytes to suppress the white-to-beige transition gene program. Despite this direct antibeiging action, injected OXT reduces total body fat, likely through an action on OXT-ergic neurons. Consistent with an antiobesity action of OXT,Oxt−/−andOxtr−/−mice display increased total body fat. Overall, the actions of OXT on bone mass and body composition provide the framework for future therapies for osteoporosis and obesity.


2014 ◽  
Vol 29 (4) ◽  
pp. 820-829 ◽  
Author(s):  
Tujun Weng ◽  
Yangli Xie ◽  
Junlan Huang ◽  
Fengtao Luo ◽  
Lingxian Yi ◽  
...  

Bone ◽  
2016 ◽  
Vol 87 ◽  
pp. 114-119 ◽  
Author(s):  
M. Raygorodskaya ◽  
Y. Gabet ◽  
C. Shochat ◽  
E. Kobyliansky ◽  
A. Torchinsky ◽  
...  

2021 ◽  
Vol 19 (2) ◽  
pp. 115-122
Author(s):  
A. Hartley ◽  
C. L. Gregson ◽  
L. Paternoster ◽  
J. H. Tobias

Abstract Purpose of Review This paper reviews how bone genetics has contributed to our understanding of the pathogenesis of osteoarthritis. As well as identifying specific genetic mechanisms involved in osteoporosis which also contribute to osteoarthritis, we review whether bone mineral density (BMD) plays a causal role in OA development. Recent Findings We examined whether those genetically predisposed to elevated BMD are at increased risk of developing OA, using our high bone mass (HBM) cohort. HBM individuals were found to have a greater prevalence of OA compared with family controls and greater development of radiographic features of OA over 8 years, with predominantly osteophytic OA. Initial Mendelian randomisation analysis provided additional support for a causal effect of increased BMD on increased OA risk. In contrast, more recent investigation estimates this relationship to be bi-directional. However, both these findings could be explained instead by shared biological pathways. Summary Pathways which contribute to BMD appear to play an important role in OA development, likely reflecting shared common mechanisms as opposed to a causal effect of raised BMD on OA. Studies in HBM individuals suggest this reflects an important role of mechanisms involved in bone formation in OA development; however further work is required to establish whether the same applies to more common forms of OA within the general population.


Sign in / Sign up

Export Citation Format

Share Document