scholarly journals Amino acid variability in the peptide composition of a suite of amphiphilic peptide siderophores from an open ocean Vibrio species

2013 ◽  
Vol 18 (5) ◽  
pp. 489-497 ◽  
Author(s):  
Julia M. Gauglitz ◽  
Alison Butler
2015 ◽  
Vol 12 (10) ◽  
pp. 7209-7255
Author(s):  
A. N. Loginova ◽  
C. Borchard ◽  
J. Meyer ◽  
H. Hauss ◽  
R. Kiko ◽  
...  

Abstract. The Eastern Tropical North Atlantic (ETNA) is an open ocean region with little input of terrestrial dissolved organic matter (DOM), suggesting that pelagic production has to be the main source of DOM. Inorganic nitrogen (DIN) and phosphorus (DIP) concentrations affect pelagic production, leading to DOM modifications. The quantitative and qualitative changes in DOM are often estimated by its optical properties. Colored DOM (CDOM) is often used to estimate dissolved organic carbon (DOC) concentrations by applied techniques, e.g. through remote sensing, whereas DOM properties, such as molecular weight, can be estimated from the slopes of the CDOM absorption spectra (S). Fluorescence properties of CDOM (FDOM) allow discriminating between different structural CDOM properties. The investigation of distribution and cycling of CDOM and FDOM was recognized to be important for understanding of physical and biogeochemical processes, influencing DOM. However, little information is available about effects of nutrient variability on CDOM and FDOM dynamics. Here we present results from two mesocosm experiments conducted with a natural plankton community of the ETNA, where effects of DIP ("Varied P") and DIN ("Varied N") supply on optical properties of DOM were studied. CDOM accumulated proportionally to phytoplankton biomass during the experiments. S decreased over time indicating accumulation of high molecular weight DOM. In Varied N, an additional CDOM portion, as a result of bacterial DOM reworking, was determined. It increased the CDOM fraction in DOC proportionally to the supplied DIN. The humic-like FDOM component (Comp.1) was derived by bacteria proportionally to DIN supply. The bound-to-protein amino acid-like FDOM component (Comp.2) was released irrespectively to phytoplankton biomass, but depending on DIP and DIN concentrations, as a part of an overflow mechanism. Under high DIN supply, Comp.2 was removed by bacterial reworking processes, leading to an accumulation of humic-like Comp.1. No influence of nutrient availability on amino acid-like FDOM component in peptide form (Comp.3) was observed. Comp.3 potentially acted as an intermediate product during formation or degradation Comp.2. Our findings suggest that changes in nutrient concentrations may lead to substantial responses in the quantity and "quality" of optically active DOM and, therefore, might bias results of the applied techniques for an estimation of DOC concentrations in open ocean regions.


Biochar ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 187-201
Author(s):  
Katja Wiedner ◽  
Corinna Schimpf ◽  
Steven Polifka ◽  
Bruno Glaser

2008 ◽  
Vol 76 (6) ◽  
pp. 2660-2670 ◽  
Author(s):  
Edmond J. Remarque ◽  
Bart W. Faber ◽  
Clemens H. M. Kocken ◽  
Alan W. Thomas

ABSTRACT Plasmodium falciparum apical membrane antigen 1 (PfAMA1), a candidate malaria vaccine, is polymorphic. This polymorphism is believed to be generated predominantly under immune selection pressure and, as a result, may compromise attempts at vaccination. Alignment of 355 PfAMA1 sequences shows that around 10% of the 622 amino acid residues can vary between alleles and that linkages between polymorphic residues occur. Using this analysis, we have designed three diversity-covering (DiCo) PfAMA1 sequences that take account of these linkages and, when taken together, on average incorporate 97% of amino acid variability observed. For each of the three DiCo sequences, a synthetic gene was constructed and used to transform the methylotrophic yeast Pichia pastoris, allowing recombinant expression. All three DiCo proteins were reactive with the reduction-sensitive monoclonal antibody 4G2, suggesting the DiCo sequences had conformations similar to those of naturally occurring PfAMA1. Rabbits were immunized with FVO strain PfAMA1 or with the DiCo proteins either individually or as a mixture. Antibody titers and the ability to inhibit parasite growth in vitro were determined. Animals immunized with the DiCo mix performed similarly to animals immunized with FVO AMA1 when measured against FCR3 strain parasites but outperformed animals immunized with FVO AMA1 when assessed against other strains. The levels of growth inhibition (∼70%) induced by the mix of three DiCo proteins were comparable for FVO, 3D7, and HB3, suggesting that a considerable degree of diversity in AMA1 is adequately covered. This suggests that vaccines based upon the DiCo mix approach provide a broader functional immunity than immunization with a single allele.


Virus Genes ◽  
2018 ◽  
Vol 54 (4) ◽  
pp. 493-501 ◽  
Author(s):  
Rossana Scutari ◽  
Monica Faieta ◽  
Roberta D’Arrigo ◽  
Lavinia Fabeni ◽  
Cristina Mussini ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0178231 ◽  
Author(s):  
Zhong-Zhou Huang ◽  
Liang Yu ◽  
Ping Huang ◽  
Li-Jun Liang ◽  
Qing Guo

Sign in / Sign up

Export Citation Format

Share Document