Gene expression profiles of dental follicle cells before and after osteogenic differentiation in vitro

2009 ◽  
Vol 13 (4) ◽  
pp. 383-391 ◽  
Author(s):  
Christian Morsczeck ◽  
Gottfried Schmalz ◽  
Torsten Eugen Reichert ◽  
Florian Völlner ◽  
Michael Saugspier ◽  
...  
2008 ◽  
Vol 29 (9) ◽  
pp. 1013-1020 ◽  
Author(s):  
Zuo-lin JIN ◽  
Yong-kuan ZHANG ◽  
Hai-yan SUN ◽  
Zhu LIN ◽  
Ying-chun BI ◽  
...  

2019 ◽  
Author(s):  
Mengting He ◽  
Xiaomeng Dong ◽  
Peiqi Wang ◽  
Zichao Xiang ◽  
Jiangyue Wang ◽  
...  

Abstract Background The incisors and molars showed different patterns of tooth eruption in rodents and the dental follicle cells play key roles in tooth eruption. Little is known about the differences in incisors and molars dental follicle cells during tooth eruption in rodents. The purpose of this study was to investigate the differences between incisor dental follicle cells and molar dental follicle cells during tooth eruption in rat.Methods Incisor dental follicle cells and molar dental follicle cells were obtained as previously described. Immunofluorescence was used to identify the cells. Gene expression was measured by real-time qPCR and western blot.Results Compared with molar dental follicle cells, the incisor dental follicle cells showed higher expression of OPG, BMP-2 and BMP-3. The molar dental follicle cells showed higher expression of MCP-1 and RANKL.Conclusions The expression patterns of genes related to tooth eruption were different in incisors and molars dental follicle cells in rat.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Risa Okada ◽  
Shin-ichiro Fujita ◽  
Riku Suzuki ◽  
Takuto Hayashi ◽  
Hirona Tsubouchi ◽  
...  

AbstractSpaceflight causes a decrease in skeletal muscle mass and strength. We set two murine experimental groups in orbit for 35 days aboard the International Space Station, under artificial earth-gravity (artificial 1 g; AG) and microgravity (μg; MG), to investigate whether artificial 1 g exposure prevents muscle atrophy at the molecular level. Our main findings indicated that AG onboard environment prevented changes under microgravity in soleus muscle not only in muscle mass and fiber type composition but also in the alteration of gene expression profiles. In particular, transcriptome analysis suggested that AG condition could prevent the alterations of some atrophy-related genes. We further screened novel candidate genes to reveal the muscle atrophy mechanism from these gene expression profiles. We suggest the potential role of Cacng1 in the atrophy of myotubes using in vitro and in vivo gene transductions. This critical project may accelerate the elucidation of muscle atrophy mechanisms.


2021 ◽  
pp. 1-6
Author(s):  
Reza Vafaee ◽  
Mostafa Rezaei Tavirani ◽  
Sina Rezaei Tavirani ◽  
Mohammadreza Razzaghi

There are many documents about benefits of exercise on human health. However, evidences indicate to positive effect of exercise on disease prevention, understanding of many aspects of this mechanism need more investigations. Determination of critical genes which effect human health. GSE156249 including 12 gene expression profiles of healthy individual biopsy from vastus lateralis muscle before and after 12-week combined exercise training intervention were extracted from gene expression omnibus (GEO) database. The significant DEGs were included in interactome unit by Cytoscape software and STRING database. The network was analyzed to find the central nodes subnetwork clusters. The nodes of prominent cluster were assessed via gene ontology by using ClueGO. Number of 8 significant DEGs and 100 first neighbors analyzed via network analysis. The network includes 2 clusters and COL3A1, BGN, and LOX were determined as central DEGs. The critical DEGs were involved in cancer prevention process.


2005 ◽  
Vol 288 (6) ◽  
pp. C1211-C1221 ◽  
Author(s):  
Steven J. Pardo ◽  
Mamta J. Patel ◽  
Michelle C. Sykes ◽  
Manu O. Platt ◽  
Nolan L. Boyd ◽  
...  

Exposure to microgravity causes bone loss in humans, and the underlying mechanism is thought to be at least partially due to a decrease in bone formation by osteoblasts. In the present study, we examined the hypothesis that microgravity changes osteoblast gene expression profiles, resulting in bone loss. For this study, we developed an in vitro system that simulates microgravity using the Random Positioning Machine (RPM) to study the effects of microgravity on 2T3 preosteoblast cells grown in gas-permeable culture disks. Exposure of 2T3 cells to simulated microgravity using the RPM for up to 9 days significantly inhibited alkaline phosphatase activity, recapitulating a bone loss response that occurs in real microgravity conditions without altering cell proliferation and shape. Next, we performed DNA microarray analysis to determine the gene expression profile of 2T3 cells exposed to 3 days of simulated microgravity. Among 10,000 genes examined using the microarray, 88 were downregulated and 52 were upregulated significantly more than twofold using simulated microgravity compared with the static 1-g condition. We then verified the microarray data for some of the genes relevant in bone biology using real-time PCR assays and immunoblotting. We confirmed that microgravity downregulated levels of alkaline phosphatase, runt-related transcription factor 2, osteomodulin, and parathyroid hormone receptor 1 mRNA; upregulated cathepsin K mRNA; and did not significantly affect bone morphogenic protein 4 and cystatin C protein levels. The identification of gravisensitive genes provides useful insight that may lead to further hypotheses regarding their roles in not only microgravity-induced bone loss but also the general patient population with similar pathological conditions, such as osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document