Nine prophylactic polishing pastes: impact on discoloration, gloss, and surface properties of a CAD/CAM resin composite

2018 ◽  
Vol 23 (1) ◽  
pp. 327-335 ◽  
Author(s):  
Anja Liebermann ◽  
Sebastian Spintzyk ◽  
Marcel Reymus ◽  
Ernst Schweizer ◽  
Bogna Stawarczyk
2013 ◽  
Vol 29 (9) ◽  
pp. 935-944 ◽  
Author(s):  
Anja Liebermann ◽  
Christine Keul ◽  
Nora Bähr ◽  
Daniel Edelhoff ◽  
Marlis Eichberger ◽  
...  

Author(s):  
Débora Michelle Gonçalves de Amorim ◽  
Aretha Heitor Veríssimo ◽  
Anne Kaline Claudino Ribeiro ◽  
Rodrigo Othávio de Assunção e Souza ◽  
Isauremi Vieira de Assunção ◽  
...  

AbstractTo investigate the impact of radiotherapy on surface properties of restorative dental materials. A conventional resin composite—CRC (Aura Enamel), a bulk-fill resin composite—BFRC (Aura Bulk-fill), a conventional glass ionomer cement—CGIC (Riva self cure), and a resin-modified glass ionomer cement—RMGIC (Riva light cure) were tested. Forty disc-shaped samples from each material (8 mm diameter × 2 mm thickness) (n = 10) were produced according to manufacturer directions and then stored in water distilled for 24 h. Surface wettability (water contact angle), Vickers microhardness, and micromorphology through scanning electron microscopy (SEM) before and after exposition to ionizing radiation (60 Gy) were obtained. The data were statistically evaluated using the two-way ANOVA and Tukey posthoc test (p < 0.05). Baseline and post-radiation values of contact angles were statistically similar for CRC, BFRC, and RMGIC, whilst post-radiation values of contact angles were statistically lower than baseline ones for CGIC. Exposition to ionizing radiation statistically increased the microhardness of CRC, and statistically decreased the microhardness of CGIC. The surface micromorphology of all materials was changed post-radiation. Exposure to ionizing radiation negatively affected the conventional glass ionomer tested, while did not alter or improved surface properties testing of the resin composites and the resin-modified glass ionomer cement tested.


Author(s):  
Michael Wendler ◽  
Anja Stenger ◽  
Julian Ripper ◽  
Eva Priewich ◽  
Renan Belli ◽  
...  

2007 ◽  
Vol 26 (5) ◽  
pp. 613-622 ◽  
Author(s):  
Masahiro ONO ◽  
Toru NIKAIDO ◽  
Masaomi IKEDA ◽  
Susumu IMAI ◽  
Nobuhiro HANADA ◽  
...  

2019 ◽  
Vol 35 (8) ◽  
pp. 1166-1172 ◽  
Author(s):  
Rasha A. Alamoush ◽  
Julian D. Satterthwaite ◽  
Nick Silikas ◽  
D.C. Watts
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7058
Author(s):  
Akane Chin ◽  
Masaomi Ikeda ◽  
Tomohiro Takagaki ◽  
Toru Nikaido ◽  
Alireza Sadr ◽  
...  

The purpose of this study was to evaluate the effect of one week of Computer-aided design/Computer-aided manufacturing (CAD/CAM) crown storage on the μTBS between resin cement and CAD/CAM resin composite blocks. The micro-tensile bond strength (μTBS) test groups were divided into 4 conditions. There are two types of CAD/CAM resin composite blocks, namely A block and P block (KATANA Avencia Block and KATANA Avencia P Block, Kuraray Noritake Dental, Tokyo, Japan) and two types of resin cements. Additionally, there are two curing methods (light cure and chemical cure) prior to the μTBS test—Immediate: cementation was performed immediately; Delay: cementation was conducted after one week of storage in air under laboratory conditions. The effect of Immediate and Delayed cementations were evaluated by a μTBS test, surface roughness measurements, light intensity measurements, water sorption measurements and Scanning electron microscope/Energy dispersive X-ray spectrometry (SEM/EDS) analysis. From the results of the μTBS test, we found that Delayed cementation showed significantly lower bond strength than that of Immediate cementation for both resin cements and both curing methods using A block. There was no significant difference between the two types of resin cements or two curing methods. Furthermore, water sorption of A block was significantly higher than that of P block. Within the limitations of this study, alumina air abrasion of CAD/CAM resin composite restorations should be performed immediately before bonding at the chairside to minimize the effect of humidity on bonding.


2018 ◽  
Vol 45 (5) ◽  
pp. 406-413 ◽  
Author(s):  
O. Steinmassl ◽  
H. Dumfahrt ◽  
I. Grunert ◽  
P.-A. Steinmassl
Keyword(s):  

2021 ◽  
Author(s):  
K Mizutani ◽  
R Ishii ◽  
T Takamizawa ◽  
S Shibasaki ◽  
H Kurokawa ◽  
...  

SUMMARY Objective: The aim of this study was to determine the flexural properties and surface characteristics of a structural colored resin composite after different finishing and polishing methods, in comparison to those of conventional resin composites. Methods and Materials: A structural color resin composite, Omnichroma (OM, Tokuyama Corp, Chiyoda City, Tokyo, Japan), and two comparison resin composites, Filtek Supreme Ultra (FS, 3M, St Paul, MN, USA) and Tetric EvoCeram (TE, Ivoclar Vivadent, Schaan, Liechtenstein), were used. The flexural properties of the resin composites were determined in accordance with the ISO 4049 specifications. For surface properties, 70 polymerized specimens of each resin composite were prepared and divided into seven groups of 10. Surface roughness (Sa), gloss (GU), and surface free energy (SFE) were investigated after the following finishing and polishing methods. Three groups of specimens were finished with a superfine-grit diamond bur (SFD), and three with a tungsten carbide bur (TCB). After finishing, one of the two remaining groups was polished with a one-step silicone point (CMP), and the other with an aluminum oxide flexible disk (SSD). A group ground with SiC 320-grit was set as a baseline. Results: The average flexural strength ranged from 116.6 to 142.3 MPa in the following order with significant differences between each value: FS &gt; TE &gt; OM. The average E ranged from 6.8 to 13.2 GPa in the following order with significant differences between each value: FS &gt; TE &gt; OM. The average R ranged from 0.77 to 1.01 MJ/mm3 in the following order: OM &gt; FS &gt; TE. The Sa values of the OM groups polished with CMP and SSD were found to be significantly lower than those of the other resin composites, regardless of the finishing method. The GU values appeared to be dependent on the material and the finishing method used. The OM specimens polished with SSD showed significantly higher GU values than those polished with CMP. Most of the resin composites polished with SSD demonstrated significantly higher γS values compared to the other groups. Extremely strong negative correlations between Sa and GU in the combined data from the three resin composites and each resin composite and between Sa and γS in the OM specimens were observed; GU showed a strong positive correlation with γS in the same material. Conclusion: These findings indicate that both flexural and surface properties are material dependent. Furthermore, the different finishing and polishing methods used in this study were observed to affect the Sa, GU, and SFE of the resin composites.


Sign in / Sign up

Export Citation Format

Share Document