scholarly journals Analysis of relative bacterial activity and lactate dehydrogenase gene expression of caries-associated bacteria in a site-specific natural biofilm: an ex vivo study

Author(s):  
Carolin Walther ◽  
Sandra Zumbülte ◽  
Christoph M. Faerber ◽  
Richard Johannes Wierichs ◽  
Hendrik Meyer-Lueckel ◽  
...  

Abstract Objectives Detecting bacterial activity is considered a promising approach to monitor shifts from symbiosis to dysbiosis in oral microbiome. The present study aimed at investigating both the relative bacterial activity and the lactate dehydrogenase (ldh) gene expression of caries-associated bacteria in a site-specific natural biofilm. Material and methods Sixty subjects (age, mean ± SE: 30.1 ± 1.4) were allocated to two groups: caries-free subjects (CF) or caries-active subjects (CA). CF presented one sound surface (CFS, n = 30). CA presented two donor sites: a cavitated caries lesion (CAC, n = 30) and a sound reference surface (CAS, n = 30). Real-time quantitative PCR (q-PCR) on species or genus level and total bacteria was performed targeting the 16S gene, the 16S rRNA, the ldh gene, and the ldh mRNA (increasing 16S ribosomal RNA copy numbers can function as an indicator of increased energy metabolism). As the 16S rRNA abundance represents the number of ribosomes, while the 16S gene abundance represents the number of genomes, the quotient of the relative abundances functions as a measure for the relative bacterial activity (%). Results Both lactobacilli and S. mutans showed the highest relative bacterial activity in CAC ((mean ± SE) 218 ± 60% and 61 ± 16%, respectively) and the lowest values for both sound reference surfaces (69 ± 48%; 8 ± 3%). Significant differences were found between CAC and CAS as well as between CAC and CFS for both lactobacilli and S. mutans (p < 0.05). The ldh gene expression of lactobacilli and S. mutans only showed moderate values in CAC (1.90E+03 ± 2.11E+03; 2.08E+04 ± 4.44E+04 transcripts/μl) and CFS (2.04E+03 ± 2.74E+03; 8.16E+03 ± 6.64E+03 transcripts/μl); consequently no significant differences were detected. Conclusion and clinical relevance Caries-associated bacteria (lactobacilli and S. mutans) showed the highest relative bacterial activity in plaque of cavitated lesions, the lowest in sound surfaces, allowing the detection of a significant activity shift in health and disease for caries-active patients. However, no significant differences in ldh gene expression could be determined.

Author(s):  
Hari K Somineni ◽  
Jordan H Weitzner ◽  
Suresh Venkateswaran ◽  
Anne Dodd ◽  
Jarod Prince ◽  
...  

Abstract Background The gut and oral microbiome have independently been shown to be associated with inflammatory bowel disease (IBD). However, it is not known to what extent gut and oral microbial disease markers converge in terms of their composition in IBD. Further, the spatial and temporal variation within the oral microenvironments of IBD remain to be elucidated. Patients and Methods We used a prospectively recruited cohort of patients with IBD (n = 47) and unrelated healthy control patients (n = 18) to examine the spatial and temporal distribution of microbiota within the various oral microenvironments, represented by saliva, tongue, buccal mucosa, and plaque, and compared them with stool. Microbiome characterization was performed using 16S rRNA gene sequencing. Results The oral microbiome displayed IBD-associated dysbiosis, in a site- and taxa-specific manner. Plaque samples depicted a relatively severe degree of dysbiosis, and the disease-associated dysbiotic bacterial groups were predominantly the members of the phylum Firmicutes. Our 16S rRNA gene analyses show that oral microbiota can distinguish patients with IBD from healthy control patients, with salivary microbiota performing the best, closely matched by stool and other oral sites. Longitudinal profiles of microbial composition suggest that some taxa are more consistently perturbed than others, preferentially in a site-dependent fashion. Conclusions Collectively, these data indicate the potential of using oral microbial profiles in screening and monitoring patients with IBD. Furthermore, these results support the importance of spatial and longitudinal microbiome sampling to interpret disease-associated dysbiotic states and eventually to gain insights into disease pathogenesis.


2018 ◽  
Vol 23 (3) ◽  
pp. 1225-1235 ◽  
Author(s):  
Carolin Walther ◽  
Hendrik Meyer-Lueckel ◽  
Georg Conrads ◽  
Marcella Esteves-Oliveira ◽  
Karsten Henne

1989 ◽  
Vol 9 (4) ◽  
pp. 1507-1512 ◽  
Author(s):  
H Zhu ◽  
H Conrad-Webb ◽  
X S Liao ◽  
P S Perlman ◽  
R A Butow

All mRNAs of yeast mitochondria are processed at their 3' ends within a conserved dodecamer sequence, 5'-AAUAAUAUUCUU-3'. A dominant nuclear suppressor, SUV3-I, was previously isolated because it suppresses a dodecamer deletion at the 3' end of the var1 gene. We have tested the effects of SUV3-1 on a mutant containing two adjacent transversions within a dodecamer at the 3' end of fit1, a gene located within the 1,143-base-pair intron of the 21S rRNA gene, whose product is a site-specific endonuclease required in crosses for the quantitative transmission of that intron to 21S alleles that lack it. The fit1 dodecamer mutations blocked both intron transmission and dodecamer cleavage, neither of which was suppressed by SUV3-1 when present in heterozygous or homozygous configurations. Unexpectedly, we found that SUV3-1 completely blocked cleavage of the wild-type fit1 dodecamer and, in SUV3-1 homozygous crosses, intron conversion. In addition, SUV3-1 resulted in at least a 40-fold increase in the amount of excised intron accumulated. Genetic analysis showed that these phenotypes resulted from the same mutation. We conclude that cleavage of a wild-type dodecamer sequence at the 3' end of the fit1 gene is essential for fit1 expression.


Sign in / Sign up

Export Citation Format

Share Document