The effect of anchoring group number on molecular structures and absorption spectra of triphenylamine sensitizers: a computational study

2011 ◽  
Vol 18 (5) ◽  
pp. 1767-1777 ◽  
Author(s):  
Jie Xu ◽  
Ligen Zhu ◽  
Lei Wang ◽  
Li Liu ◽  
Zikui Bai ◽  
...  
Photochem ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 26-37
Author(s):  
Victoria C. Frederick ◽  
Thomas A. Ashy ◽  
Barbara Marchetti ◽  
Michael N. R. Ashfold ◽  
Tolga N. V. Karsili

Melanins are skin-centered molecular structures that block harmful UV radiation from the sun and help protect chromosomal DNA from UV damage. Understanding the photodynamics of the chromophores that make up eumelanin is therefore paramount. This manuscript presents a multi-reference computational study of the mechanisms responsible for the experimentally observed photostability of a melanin-relevant model heterodimer comprising a catechol (C)–benzoquinone (Q) pair. The present results validate a recently proposed photoinduced intermolecular transfer of an H atom from an OH moiety of C to a carbonyl-oxygen atom of the Q. Photoexcitation of the ground state C:Q heterodimer (which has a π-stacked “sandwich” structure) results in population of a locally excited ππ* state (on Q), which develops increasing charge-transfer (biradical) character as it evolves to a “hinged” minimum energy geometry and drives proton transfer (i.e., net H atom transfer) from C to Q. The study provides further insights into excited state decay mechanisms that could contribute to the photostability afforded by the bulk polymeric structure of eumelanin.


2019 ◽  
Vol 12 (1) ◽  
pp. 70-81
Author(s):  
Denisa Cagardová ◽  
Vladimír Lukeš ◽  
Ján Matúška ◽  
Peter Poliak

Abstract A computational study using density functional theory is reported for selected model aza[n]circulenes (n = 6, 7, 8 and 9) and their derivatives consisting of pyrrole and benzene units. Local aromaticity of central rings was discussed and analyzed using theoretical structural indices. Depending on their molecular structures, energies of the highest occupied and lowest unoccupied molecular orbitals change from –5.23 eV to –4.08 eV and from –1.97 eV to –0.41 eV, respectively. Based on B3LYP calculated optimal geometries, electronic structure of molecules and their charge transport properties resulted in the suggestion of three planar molecules containing three or four pyrrole units as potential candidates for p-type semiconductors. Hole drift mobilities for ideal stacked dimers of these potential semiconductors were calculated and they range from 0.94 cm2·V−1·s−1 to 7.33 cm2·V−1·s−1.


2013 ◽  
Vol 668 ◽  
pp. 110-114
Author(s):  
Zhong Quan Wan ◽  
Lin Lei Zhou ◽  
Chun Yang Jia ◽  
Xiao Jun Yao ◽  
Yu Shi

Three novel dyes (D1, D2 and D3) containing triphenylamine (TPA) unit as core and bearing different benzimidazole units as secondary electron-donors are designed. The geometries, electronic structures, and electronic absorption spectra of these dyes are studied by DFT and TD-DFT. The optimized results indicate that these dyes are all non-coplanar, which can help to inhibit the close intermolecular π-π stacking aggregation effectively. The lowest unoccupied molecular orbital (LUMO) energy levels of the dyes are higher than the conduction band edge of the TiO2, which ensures a high efficiency of electron transfer from these dyes to TiO2 electrode. As the highest occupied molecular orbital (HOMO) energy levels of these dyes are lower than those of I-/I-3, these molecules that lose electrons could be restored by getting electrons from electrolyte. The absorption spectra of these dyes are simulated, and the calculated results indicate that D3 can absorb more photons than those of D1, D2 and TPAR in the region from 250 to 580 nm, which should have the best performance of photo-to-electric conversion efficiency.


2014 ◽  
Vol 118 (5) ◽  
pp. 862-871 ◽  
Author(s):  
Wichard Beenken ◽  
Martin Presselt ◽  
Thien H. Ngo ◽  
Wim Dehaen ◽  
Wouter Maes ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5853
Author(s):  
Sulejman Skoko ◽  
Matteo Ambrosetti ◽  
Tommaso Giovannini ◽  
Chiara Cappelli

We present a detailed computational study of the UV/Vis spectra of four relevant flavonoids in aqueous solution, namely luteolin, kaempferol, quercetin, and myricetin. The absorption spectra are simulated by exploiting a fully polarizable quantum mechanical (QM)/molecular mechanics (MM) model, based on the fluctuating charge (FQ) force field. Such a model is coupled with configurational sampling obtained by performing classical molecular dynamics (MD) simulations. The calculated QM/FQ spectra are compared with the experiments. We show that an accurate reproduction of the UV/Vis spectra of the selected flavonoids can be obtained by appropriately taking into account the role of configurational sampling, polarization, and hydrogen bonding interactions.


2015 ◽  
Vol 17 (18) ◽  
pp. 12090-12099 ◽  
Author(s):  
Dalibor Hršak ◽  
Lotte Holmegaard ◽  
Anton S. Poulsen ◽  
Nanna H. List ◽  
Jacob Kongsted ◽  
...  

We present a combined experimental and computational study of one- and two-photon absorption spectra of protonated chloroharmines in aqueous and acetonitrile solutions.


Sign in / Sign up

Export Citation Format

Share Document