Threshold Energy Effects in Secondary Electron Emission

2000 ◽  
Vol 6 (4) ◽  
pp. 291-296
Author(s):  
A. Howie

Abstract In large bandgap semiconductors and insulators, the threshold energies for e–h pair production and ionization damage can lie above the vacuum level. For low energy imaging, a window is then opened whose width is potentially sensitive to local changes in work function, doping level, or acidity. Recent progress and future opportunities for damage-free imaging of these properties using low energy electrons are discussed in the light of the underlying physics, as well as of recent instrumental developments in low energy electron microscopy (LEEM), environmental scanning electron microscopy (ESEM), photoelectron emission microscopy (PEEM), scanned probe microscopy (SPM), and projection electron microscopy.

2000 ◽  
Vol 6 (4) ◽  
pp. 291-296 ◽  
Author(s):  
A. Howie

AbstractIn large bandgap semiconductors and insulators, the threshold energies for e–h pair production and ionization damage can lie above the vacuum level. For low energy imaging, a window is then opened whose width is potentially sensitive to local changes in work function, doping level, or acidity. Recent progress and future opportunities for damage-free imaging of these properties using low energy electrons are discussed in the light of the underlying physics, as well as of recent instrumental developments in low energy electron microscopy (LEEM), environmental scanning electron microscopy (ESEM), photoelectron emission microscopy (PEEM), scanned probe microscopy (SPM), and projection electron microscopy.


Author(s):  
Howard S. Kaufman ◽  
Keith D. Lillemoe ◽  
John T. Mastovich ◽  
Henry A. Pitt

Gallstones contain precipitated cholesterol, calcium salts, and proteins. Calcium (Ca) bilirubinate, palmitate, phosphate, and carbonate occurring in gallstones have variable morphologies but characteristic windowless energy dispersive x-ray (EDX) spectra. Previous studies of gallstone microstructure and composition using scanning electron microscopy (SEM) with EDX have been limited to dehydrated samples. In this state, Ca bilirubinates appear as either glassy masses, which predominate in black pigment stones, or as clusters, which are found mostly in cholesterol gallstones. The three polymorphs of Ca carbonate, calcite, vaterite, and aragonite, have been identified in gallstones by x-ray diffraction, however; the morphologies of these crystals vary in the literature. The purpose of this experiment was to study fresh gallstones by environmental SEM (ESEM) to determine if dehydration affects gallstone Ca salt morphology.Gallstones and bile were obtained fresh at cholecystectomy from 6 patients. To prevent dehydration, stones were stored in bile at 37°C. All samples were studied within 4 days of procurement.


Author(s):  
Klaus-Ruediger Peters

Environmental SEM operate at specimen chamber pressures of ∼20 torr (2.7 kPa) allowing stabilization of liquid water at room temperature, working on rugged insulators, and generation of an environmental secondary electron (ESE) signal. All signals available in conventional high vacuum instruments are also utilized in the environmental SEM, including BSE, SE, absorbed current, CL, and X-ray. In addition, the ESEM allows utilization of the flux of charge carriers as information, providing exciting new signal modes not available to BSE imaging or to conventional high vacuum SEM.In the ESEM, at low vacuum, SE electrons are collected with a “gaseous detector”. This detector collects low energy electrons (and ions) with biased wires or plates similar to those used in early high vacuum SEM for SE detection. The detector electrode can be integrated into the first PLA or positioned at any other place resulting in a versatile system that provides a variety of surface information.


2001 ◽  
Vol 707 ◽  
Author(s):  
Ian C. Bache ◽  
Catherine M. Ramsdale ◽  
D. Steve Thomas ◽  
Ana-Claudia Arias ◽  
J. Devin MacKenzie ◽  
...  

ABSTRACTCharacterising the morphology of thin films for use in device applications requires the ability to study both the structure within the plane of the film, and also through its thickness. Environmental scanning electron microscopy has proved to be a fruitful technique for the study of such films both because contrast can be seen within the film without the need for staining (as is conventionally done for electron microscopy), and because cross-sectional images can be obtained without charging artefacts. The application of ESEM to a particular blend of relevance to photovoltaics is described.


Sign in / Sign up

Export Citation Format

Share Document