scholarly journals Enhancing fracture-network characterization and discrete-fracture-network simulation with high-resolution surveys using unmanned aerial vehicles

2020 ◽  
Vol 28 (7) ◽  
pp. 2285-2302
Author(s):  
Mahawa Essa Mabossani Akara ◽  
Donald M. Reeves ◽  
Rishi Parashar

Abstract A workflow is presented that integrates unmanned aerial vehicle (UAV) imagery with discrete fracture network (DFN) geometric characterization and quantification of fluid flow. The DFN analysis allows for reliable characterization and reproduction of the most relevant features of fracture networks, including: identification of orientation sets and their characteristics (mean orientation, dispersion, and prior probability); scale invariance in distributions of fracture length and spatial location/clustering; and the distribution of aperture values used to compute network-scale equivalent permeability. A two-dimensional DFN-generation approach honors field data by explicitly reproducing observed multi-scale fracture clustering using a multiplicative cascade process and power law distribution of fracture length. The influence of aperture on network-scale equivalent permeability is investigated using comparisons between a sublinear aperture-to-length relationship and constant aperture. To assess the applicability of the developed methodology, DFN flow simulations are calibrated to pumping test data. Results suggest that even at small scales, UAV surveys capture the essential geometrical properties required for fluid flow characterization. Both the constant and sublinear aperture scaling approaches provide good matches to the pumping test results with only minimal calibration, indicating that the reproduced networks sufficiently capture the geometric and connectivity properties characteristic of the granitic rocks at the study site. The sublinear aperture scaling case honors the directions of dominant fractures that play a critical role in connecting fracture clusters and provides a realistic representation of network permeability.

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5488
Author(s):  
Leidy Laura Alvarez ◽  
Leonardo José do Nascimento Guimarães ◽  
Igor Fernandes Gomes ◽  
Leila Beserra ◽  
Leonardo Cabral Pereira ◽  
...  

Fluid flow modeling of naturally fractured reservoirs remains a challenge because of the complex nature of fracture systems controlled by various chemical and physical phenomena. A discrete fracture network (DFN) model represents an approach to capturing the relationship of fractures in a fracture system. Topology represents the connectivity aspect of the fracture planes, which have a fundamental role in flow simulation in geomaterials involving fractures and the rock matrix. Therefore, one of the most-used methods to treat fractured reservoirs is the double porosity-double permeability model. This approach requires the shape factor calculation, a key parameter used to determine the effects of coupled fracture-matrix fluid flow on the mass transfer between different domains. This paper presents a numerical investigation that aimed to evaluate the impact of fracture topology on the shape factor and equivalent permeability through hydraulic connectivity (f). This study was based on numerical simulations of flow performed in discrete fracture network (DFN) models embedded in finite element meshes (FEM). Modeled cases represent four hypothetical examples of fractured media and three real scenarios extracted from a Brazilian pre-salt carbonate reservoir model. We have compared the results of the numerical simulations with data obtained using Oda’s analytical model and Oda’s correction approach, considering the hydraulic connectivity f. The simulations showed that the equivalent permeability and the shape factor are strongly influenced by the hydraulic connectivity (f) in synthetic scenarios for X and Y-node topological patterns, which showed the higher value for f (0.81) and more expressive values for upscaled permeability (kx-node = 0.1151 and ky-node = 0.1153) and shape factor (25.6 and 14.5), respectively. We have shown that the analytical methods are not efficient for estimating the equivalent permeability of the fractured medium, including when these methods were corrected using topological aspects.


2016 ◽  
Vol 25 (3) ◽  
pp. 813-827 ◽  
Author(s):  
Ghislain Trullenque ◽  
Rishi Parashar ◽  
Clément Delcourt ◽  
Lucille Collet ◽  
Pauline Villard ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1857
Author(s):  
Bowen Hu ◽  
Jianguo Wang ◽  
Zhanguo Ma

A fractal discrete fracture network based model was proposed for the gas production prediction from a fractured shale reservoir. Firstly, this model was established based on the fractal distribution of fracture length and a fractal permeability model of shale matrix which coupled the multiple flow mechanisms of slip flow, Knudsen diffusion, surface diffusion, and multilayer adsorption. Then, a numerical model was formulated with the governing equations of gas transport in both a shale matrix and fracture network system and the deformation equation of the fractured shale reservoir. Thirdly, this numerical model was solved within the platform of COMSOL Multiphysics (a finite element software) and verified through three fractal discrete fracture networks and the field data of gas production from two shale wells. Finally, the sensitivity analysis was conducted on fracture length fractal dimension, pore size distribution, and fracture permeability. This study found that cumulative gas production increases up to 113% when the fracture fractal length dimension increases from 1.5 to the critical value of 1.7. The gas production rate declines more rapidly for a larger fractal dimension (up to 1.7). Wider distribution of pore sizes (either bigger maximum pore size or smaller minimum pore size or both) can increase the matrix permeability and is beneficial to cumulative gas production. A linear relationship is observed between the fracture permeability and the cumulative gas production. Thus, the fracture permeability can significantly impact shale gas production.


2018 ◽  
Vol 62 (1) ◽  
pp. 1-14
Author(s):  
Dorottya Kovács ◽  
Gergely Dabi ◽  
Balázs Vásárhelyi

With the intent of making data acquisition for fractal geometry-based discrete fracture network (DFN) modeling time-efficient and automatized, a new method was established. For the automation of data retrieval from the images of the studied surfaces, a series of image-processing operations and MATLAB algorithms have been developed. The method allows the retrieval of more than 1,000 fracture-length data/cm2 of one sample in several minutes. This methodology tends to be a useful tool in studies of fracture network geometries. DFN models of a supposed excavated and/or environmental damage zone, designed with the use of data supplied by the above method, are presented in this work as an example.


Sign in / Sign up

Export Citation Format

Share Document