Computing soil creep velocity using dendrochronology

2016 ◽  
Vol 75 (4) ◽  
pp. 1761-1768 ◽  
Author(s):  
Mohammad Amjad Sabir ◽  
Muhammad Umar ◽  
Muhammad Farooq ◽  
Faridullah Faridullah
Keyword(s):  
1997 ◽  
Vol 282-287 ◽  
pp. 2367-2368 ◽  
Author(s):  
C.C. Lam ◽  
X. Jin ◽  
K.C. Hung ◽  
H.M. Shao

1971 ◽  
Vol 45 (4) ◽  
pp. 759-768 ◽  
Author(s):  
M. M. R. Williams

The effect of a temperature gradient in a gas inclined at an angle to a boundary wall has been investigated. For an infinite half-space of gas it is found that, in addition to the conventional temperature slip problem, the component of the temperature gradient parallel to the wall induces a net mass flow known as thermal creep. We show that the temperature slip and thermal creep effects can be decoupled and treated quite separately.Expressions are obtained for the creep velocity and heat flux, both far from and at the boundary; it is noted that thermal creep tends to reduce the effective thermal conductivity of the medium.


2021 ◽  
Vol 21 (9) ◽  
pp. 04021172
Author(s):  
Sheng Li ◽  
Yuchi Jianie ◽  
I-Hsuan Ho ◽  
Li Ma ◽  
Bentian Yu ◽  
...  
Keyword(s):  

2002 ◽  
Vol 12 (9) ◽  
pp. 315-315
Author(s):  
K. Cicak ◽  
K. O'Neill ◽  
R. E. Thorne

Below T=40 K, charge-density wave (CDW) transport in NbSe3 is characterized by two well-defined driving force thresholds ET and ET*. Between these thresholds the CDW moves extremely slowly with creep-like temperature and driving force dependencies. At the same time, the CDW exhibits coherent oscillations with a frequency proportional to the CDW current and having very narrow spectral widths, suggesting that the collective motion is temporally ordered. We have extended our initial work to doped crystals containing isoelectronic (Ta) and nonisoelectronic (Ti) impurities, and to crystals of different thicknesses. These experiments show that the qualitative features are extremely robust, and that the functional form of the creep velocity versus driving force and temperature is consistent across all samples for currents ranging over five orders of magnitude. The temperature dependence is consistent with processes having an energy comparable to the CDW gap, but the field and impurity dependencies are inconsistent with all predicted functional forms for creep in CDWs and related systems, and with our earlier picture of amplitude collapse at each impurity. We compare our results to measurements of creep-like behavior in other CDW and SDW systems, and discuss possible mechanisms.


2016 ◽  
Vol 22 (2) ◽  
pp. 324-341
Author(s):  
Rafał Gawałkiewicz ◽  
Anna Szafarczyk

Mounds, as anthropogenic constructions of a very delicate structure, are subdued to constant changes, which, due to the impact of external factors (prolonged precipitation, tremors) are subdued to deformations in the form of mass movements. These phenomena usually have the character of mild soil creep in time and sometimes, as a result of rapid loss of stability, they are seriously damaged by landslide. This phenomenon causes temporary exclusion of the object from use. In the framework of the protection of these objects, the maintenance was carried out within the preventive measures referring to the construction and surveying monitoring of the geometry changes in time, as a result of phenomena taking place in the ground medium under the influence of environmental factors causing strains. The process of the deformation of mounds is similar to the characteristic, according to the Terzagie's theory. The application of surveying technologies of high precision allows the monitoring of changes in their geometry in time. The properly defined study area and the proper selection of measurement technology in the aspect of the accuracy of the prediction of changes, can efficiently help in defining the scale of deformations in the decisive process referring to the way of efficient protection of barrows. The article presents the results of point monitoring carried out with surveying technologies within 11 measurement series carried out on the selected measurement base of the Wanda Mound. The use of measurement technologies of integrated and specialist software, allows complex assessment of the degree of deformation and the trends of these changes in time, as well as identifying anomaly zones in the framework of the landslide monitoring.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Panpan Guo ◽  
Gang Lei ◽  
Lina Luo ◽  
Xiaonan Gong ◽  
Yixian Wang ◽  
...  

This paper describes recent advances in the effect of soil creep on the time-dependent deformation of deep braced excavation. The effect of soil creep is generally investigated using the observational method and the plain-strain numerical simulation method. The observational method is more applicable for deep braced excavations in soft clays constructed using the top-down method. The plain-strain numerical simulation method can be conveniently used for parametric analysis, but it is unable to capture the spatial characteristics of soil creep effect on lateral wall deflections and ground movements. The additional lateral wall deflections and ground movements that are generated due to the soil creep effect can account for as large as 30% of the total displacements, which highlights the importance of considering the effect of soil creep in deep braced excavations through soft clays. The magnitude of the displacements due to soil creep depends on various factors, such as excavation depth, elapsed period, unsupported length, and strut stiffness. Parametric analyses have indicated several effective measures that can be taken in practice to mitigate the detrimental effect of soil creep on the deformation of deep braced excavation. Based on the literature review, potential directions of the related future research work are discussed. This paper should be beneficial for both researchers and engineers focusing on mitigating the adverse effect of soil creep on the stability of deep braced excavations.


2012 ◽  
Vol 8 (2) ◽  
pp. 107-124 ◽  
Author(s):  
Behzad Fatahi ◽  
Thu Minh Le ◽  
Minh Quang Le ◽  
Hadi Khabbaz

1995 ◽  
Vol 32 (3) ◽  
pp. 545-552 ◽  
Author(s):  
B. Wang ◽  
Hugh M. French

Field measurements of frozen soil creep in the upper 3.0 m of permafrost indicate that creep occurs in both winter and summer. Between 1992 and 1993, the mean rate of creep ranged from 0.44 cm at 1.6 m depth to 0.16 cm at 2.8 m depth but there was extreme variability. Creep parameters n and A, as defined by the power flow law, were calculated from field data. Parameter n ranged between 1.96 and 2.29 and increased with depth, while A decreased with depth. Comparisons of creep rates for different permafrost environments suggest that ground temperature largely controls the magnitude of permafrost creep. Key words : permafrost, creep parameters, Tibet Plateau.


Sign in / Sign up

Export Citation Format

Share Document