Physical, microstructure and leaching assessments for pavement road base containing mixed steel slag and cathode ray tube glass

Author(s):  
Ahmad Yusri Mohamad ◽  
Maslina Jamil ◽  
Nur Izzi Md Yusoff ◽  
Syazwani Mohd Fadzil ◽  
Mohd Raihan Taha
2021 ◽  
Vol 9 (1) ◽  
pp. 42-51
Author(s):  
Ahmad Yusri Mohamad ◽  
Maslina Jamil ◽  
Nur Izzi Md. Yusoff ◽  
Mohd Raihan Taha

2012 ◽  
Vol 174-177 ◽  
pp. 676-680
Author(s):  
Fang Xu ◽  
Ming Kai Zhou ◽  
Jian Ping Chen

The unconfined compressive strength is used to be the valuation index, the mechanical performance of three kinds of new road base material, which are fly ash stabilized steel slag sand (FA-SS for short), lime and fly ash stabilized steel slag sand (L-FA-SS for short), cement and fly ash stabilized steel slag sand(C-FA-SS for short), are studied in this paper. The results show that the unconfined compressive strength performance of FA-SS is similar to L-FA-SS, and it can meet the highest strength when the ratio of steel slag to fly ash is 1:1~2:1. When the ratio of fly ash to the steel slag is 10:90, it is good to use cement stabilizing. Comparing the new road base materials with the traditional road base material, the former has better strength performance and economy function advantage.


2021 ◽  
Vol 13 (8) ◽  
pp. 4396
Author(s):  
Bo Gao ◽  
Chao Yang ◽  
Yingxue Zou ◽  
Fusong Wang ◽  
Xiaojun Zhou ◽  
...  

In recent years, recycling steel slag is receiving growing interest in the road base layer construction field due to its role in alleviating land occupation and resource shortages. However, the mixture compaction and its environmental impact on practical construction sites remain unclear, which may hinder the application of steel slags in road layers. This study investigates the pavement construction of the ‘Baotou-Maoming’ motorway, located in Inner Mongolia, China, analyzing the compaction procedures and assessing the environmental impacts caused by the road base layer containing steel slag. Firstly, mechanical properties and texture appearances of the steel slag aggregates are characterized. Afterwards, the comparative assessments for steel slag and andesite layers compaction are quantified from equivalent CO2 emission and energy consumption aspects, respectively. The results show that the steel slag has a better surface texture than the natural aggregates; physical properties including compactness, flatness and compressive strength comply with the requirements for applying steel slag to a hydraulically bound mixture. Compared to the base layer using andesite aggregates, the compaction vibration period of the course containing steel slags should be reduced to achieve a proper density due to the “hard-to-hard” effect that occurs between the adjacent steel slag particles. Consequently, the additional energy and the equivalent CO2 are generated at 2.67 MJ/m3 and 0.20 kg/m3, respectively.


2020 ◽  
Vol 8 (6) ◽  
pp. 1249-1252

The volume of waste generated in Malaysia and throughout the globe continues to increase. Waste management and protection of the environment should be given a priority, and this requires for studied to be carried out on the problem of waste management. One of the approaches that can be adopted in this regard is to reuse waste materials as recycled products. Mechanical and geotechnical tests, namely the Los Angeles abrasion tests, the Atterberg limit test, and the sand equivalent value, were carried out to determine the suitability of using steel slag and CRT glass in the construction of road pavements. The value obtained from the laboratory test is within the JKR standard specification (JKR/SPJ/2008-S4). The objective of this study is to investigate the mechanical and geotechnical properties of steel slag and cathode ray tube (CRT) glass in order to determine the feasibility of using both materials as a natural aggregate replacement in the construction of road pavements. The result for the Los Angeles abrasion test showed that steel slag has better wear resistance and mechanical properties compared to those of the natural aggregates (granite) use in this study. The result for the Atterberg limit test showed that all three samples (granite, steel slag and CRT glass) are non-plastic. While the result for the sand equivalent value test showed that the granite sample has the highest value, followed by CRT glass and steel slag. Thus, it can be concluded that steel slag and CRT glass are suitable substitutes for natural aggregates (granites) since they have been proven to meet the requirements for the natural aggregates with similar properties. This provides an alternative use for recycled materials and the possibility of using these materials as an aggregate replacement in the construction of road pavements.


2009 ◽  
Vol 164 (1) ◽  
pp. 99-104 ◽  
Author(s):  
Weiguo Shen ◽  
Mingkai Zhou ◽  
Wei Ma ◽  
Jinqiang Hu ◽  
Zhi Cai
Keyword(s):  
Fly Ash ◽  

2010 ◽  
Vol 168-170 ◽  
pp. 2078-2081
Author(s):  
Zhan You Yan ◽  
Yu Shu ◽  
Jian Qing Bu ◽  
Xiang Guo Li

Fly-ash is an industrial waste burning pulverize coal boilers for thermal power plant and large enterprises, the steel slag is too a residue generated waste in steelmaking industrial processes, the average for every ton steel to produce half ton steel slag, steel slag and fly ash discharge amounts is very big, utilization ratio is very low. At present, a large number of steel slag is used of reclamation work, the remaining items is used rarely and large number is left storage. This paper is introduction steel slag and fly ash to do road base-course material, such can make good use of industry residue waste in large amount to reduce exploitation and cut down natural building stones, it is an application for ecological building materials again. Major study the steel slag and fly ash road features, these tests include materials compaction reality among them, mix design, unconfined compressive strength, split tensile strength, resilient modulus and other commonly used performance. Through comparative analysis, this two materials combination has good use of quality, it has greatly better than other materials such as lime-fly-ash stabilize crushed stone and lime-fly-ash soil and other materials. In particular, it has very good performance to reduce road base-course crack, the material has good resistance shrinkage and temperature shrinkage ability. Therefore, the combination of steel slag and fly ash can be done entirely road base-course and extend the road life.


Sign in / Sign up

Export Citation Format

Share Document