Self-healing Polymeric Hydrogels: Toward Multifunctional Soft Smart Materials

Author(s):  
Xiao-Ling Zuo ◽  
Shao-Fan Wang ◽  
Xiao-Xia Le ◽  
Wei Lu ◽  
Tao Chen
Author(s):  
Colette J. Whitfield ◽  
Alice M. Banks ◽  
Gema Dura ◽  
John Love ◽  
Jonathan E. Fieldsend ◽  
...  

AbstractSmart materials are able to alter one or more of their properties in response to defined stimuli. Our ability to design and create such materials, however, does not match the diversity and specificity of responses seen within the biological domain. We propose that relocation of molecular phenomena from living cells into hydrogels can be used to confer smart functionality to materials. We establish that cell-free protein synthesis can be conducted in agarose hydrogels, that gene expression occurs throughout the material and that co-expression of genes is possible. We demonstrate that gene expression can be controlled transcriptionally (using in gel gene interactions) and translationally in response to small molecule and nucleic acid triggers. We use this system to design and build a genetic device that can alter the structural property of its chassis material in response to exogenous stimuli. Importantly, we establish that a wide range of hydrogels are appropriate chassis for cell-free synthetic biology, meaning a designer may alter both the genetic and hydrogel components according to the requirements of a given application. We probe the relationship between the physical structure of the gel and in gel protein synthesis and reveal that the material itself may act as a macromolecular crowder enhancing protein synthesis. Given the extensive range of genetically encoded information processing networks in the living kingdom and the structural and chemical diversity of hydrogels, this work establishes a model by which cell-free synthetic biology can be used to create autonomic and adaptive materials.Significance statementSmart materials have the ability to change one or more of their properties (e.g. structure, shape or function) in response to specific triggers. They have applications ranging from light-sensitive sunglasses and drug delivery systems to shape-memory alloys and self-healing coatings. The ability to programme such materials, however, is basic compared to the ability of a living organism to observe, understand and respond to its environment. Here we demonstrate the relocation of biological information processing systems from cells to materials. We achieved this by operating small, programmable genetic devices outside the confines of a living cell and inside hydrogel matrices. These results establish a method for developing materials functionally enhanced with molecular machinery from biological systems.


Biomimetics ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 30 ◽  
Author(s):  
Amanda Andersen ◽  
Yaqing Chen ◽  
Henrik Birkedal

The blue mussel incorporates the polyphenolic amino acid l-3,4-dihydroxyphenylalanine (DOPA) to achieve self-healing, pH-responsiveness, and impressive underwater adhesion in the byssus threads that ensure the survival of the animal. This is achieved by a pH-dependent and versatile reaction chemistry of polyphenols, including both physical interactions as well as reversible and irreversible chemical bonding. With a short introduction to the biological background, we here review the latest advances in the development of smart materials based on the metal-chelating capabilities of polyphenols. We focus on new ways of utilizing the polyphenolic properties, including studies on the modifications of the nearby chemical environment (on and near the polyphenolic moiety) and on the incorporation of polyphenols into untraditional materials.


2008 ◽  
Vol 47-50 ◽  
pp. 511-514 ◽  
Author(s):  
Adrian Bejan ◽  
Sylvie Lorente

Here we draw attention to the development of smart materials with embedded vasculatures that provide multiple functionality: volumetric cooling, self-healing, mechanical strength, etc. Vascularization is achieved by using tree-shaped (dendritic) and grid-shaped flow architectures. As length scales become smaller, dendritic vascularization provides dramatically superior volumetric bathing and transport properties than the use of bundles of parallel microchannels. Embedded grids of channels provide substantially better volumetric bathing when the channels have multiple diameters that are selected optimally and put in the right places. Two novel dendritic architectures are proposed: trees matched canopy to canopy, and trees that alternate with upside down trees. Both have optimized length scales and layouts. Flow architectures are derived from principle, in accordance with constructal theory, not by mimicking nature.


2020 ◽  
Vol 993 ◽  
pp. 799-805
Author(s):  
Gu Fan Zhao ◽  
Wei Na Di

Smart materials, especially environmentally responsive materials are the basis of many applications, and have attracted much more attentions. In recent years, application research of smart materials in the oil and gas industry has begun. Through principle/performance analysis, application environment comparison, and demand analysis, the application potential and application advantages of self-healing concrete, vibration energy-generating rubber and 4D intelligent structural materials in the downhole operations were evaluated. The application status of smart materials in petroleum engineering is introduced. At the same time, combined with the actual domestic engineering requirements, the long-term effect of improving underground plugging, the shale inhibition of drilling fluid, the downhole control and the efficiency of drilling operations are all proposed. For the application prospects, it is recommended to keep track of the research progress of environmentally responsive materials and carry out pre-research work on the application of advanced smart materials in the field of downhole operations.


Author(s):  
Mana Afshari ◽  
Thomas Marquie´ ◽  
Daniel J. Inman

Current switch bolt inspection on rail systems is a labor intensive and sometimes unreliable approach to maintaining the switch integrity. Recent rail accidents in the United Kingdom (Potters Bar in 2002 and Grayrigg in 2007) underscore the need for routine inspections of the switch mechanisms. From the Grayrigg report of 23 February 2007 the main causes of the accident were found to be the loosening and, as a result, the initiation and growth of cracks, and, eventually, rupture of the bolts of the switch bars, especially the one maintaining the switch rails at a correct distance apart. Such findings also resulted from the 2002 crash report but unfortunately frequent visual inspections were not forthcoming. In this paper, an effective method for monitoring the loosening of the switch bolts is described. As the loosening of the bolts further causes the crack formation in the bolted joints, it seems valid to say that the early detection of loosening of bolted joints in railroad switches will be of great importance in eliminating the need for frequent visual inspection by totally automating inspection of the switches’ mechanical condition. The first part of the present paper focuses on the use of smart materials and structures for the health monitoring of bolted joints in railroad switches. It is shown that using the piezoelectric transducers and the impedance-based structural health monitoring technique, the loosening of the bolted joints are detectable. The accuracy in loosening detection is as high as 25 ft-lbs which corresponds to merely 1/10th of a bolt turn. Being able to detect the loosening of the bolted joints in railroad switches, the concept of self-healing bolted joints is applied in the next part in order to automatically retighten the loosened bolts to their prescribed functional conditions.


2013 ◽  
Vol 54 (2) ◽  
pp. 293-304 ◽  
Author(s):  
S. Neuser ◽  
V. Michaud
Keyword(s):  

2020 ◽  
Author(s):  
Avinash Manjula-Basavanna ◽  
Anna Duraj-Thatte ◽  
Neel S. Joshi

AbstractLiving systems have not only the exemplary capability to fabricate materials (e.g. wood, bone) under ambient conditions but they also consist of living cells that imbue them with properties like growth and self-regeneration. Like a seed that can grow into a sturdy living wood, we wondered: can living cells alone serve as the primary building block to fabricate stiff materials? Here we report the fabrication of stiff living materials (SLMs) produced entirely from microbial cells, without the incorporation of any structural biopolymers (e.g. cellulose, chitin, collagen) or biominerals (e.g. hydroxyapatite, calcium carbonate) that are known to impart stiffness to biological materials. Remarkably, SLMs are also lightweight, strong, resistant to organic solvents and can self-regenerate. This living materials technology can serve as a powerful biomanufacturing platform to design and develop sustainable structural materials, biosensors, self-regulators, self-healing and environment-responsive smart materials.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3782
Author(s):  
Anupama Devi V. K. ◽  
Rohin Shyam ◽  
Arunkumar Palaniappan ◽  
Amit Kumar Jaiswal ◽  
Tae-Hwan Oh ◽  
...  

Polymeric hydrogels are widely explored materials for biomedical applications. However, they have inherent limitations like poor resistance to stimuli and low mechanical strength. This drawback of hydrogels gave rise to ‘’smart self-healing hydrogels’’ which autonomously repair themselves when ruptured or traumatized. It is superior in terms of durability and stability due to its capacity to reform its shape, injectability, and stretchability thereby regaining back the original mechanical property. This review focuses on various self-healing mechanisms (covalent and non-covalent interactions) of these hydrogels, methods used to evaluate their self-healing properties, and their applications in wound healing, drug delivery, cell encapsulation, and tissue engineering systems. Furthermore, composite materials are used to enhance the hydrogel’s mechanical properties. Hence, findings of research with various composite materials are briefly discussed in order to emphasize the healing capacity of such hydrogels. Additionally, various methods to evaluate the self-healing properties of hydrogels and their recent advancements towards 3D bioprinting are also reviewed. The review is concluded by proposing several pertinent challenges encountered at present as well as some prominent future perspectives.


Sign in / Sign up

Export Citation Format

Share Document