scholarly journals Interleukin-17A derived from mast cells contributes to fibrosis in gastric cancer with peritoneal dissemination

2020 ◽  
Vol 24 (1) ◽  
pp. 31-44
Author(s):  
Katsuya Gunjigake ◽  
Jun Kinoshita ◽  
Takahisa Yamaguchi ◽  
Hiroto Saito ◽  
Daisuke Fujimori ◽  
...  

Abstract Objectives Interleukin-17A (IL-17A) is pro-inflammatory cytokine and acts as profibrotic factor in the fibrosis of various organs. Fibrosis tumor-like peritoneal dissemination of gastric cancer interferes with drug delivery and immune cell infiltration because of its high internal pressure. In this study, we examined the relationship between IL-17A and tissue fibrosis in peritoneal dissemination and elucidated the mechanism of fibrosis induced by IL-17A using human peritoneal mesothelial cells (HPMCs) and a mouse xenograft model. Methods Seventy gastric cancer patients with peritoneal dissemination were evaluated. The correlation between IL-17A and fibrosis was examined by immunofluorescence and immunohistochemistry. A fibrosis tumor model was developed based on subcutaneous transplantation of co-cultured cells (HPMCs and human gastric cancer cell line MKN-45) into the dorsal side of nude mice. Mice were subsequently treated with or without IL-17A. We also examined the effect of IL-17A on HPMCs in vitro. Results There was a significant correlation between IL-17A expression, the number of mast cell tryptase (MCT)-positive cells, and the degree of fibrosis (r = 0.417, P < 0.01). In the mouse model, IL-17A enhanced tumor progression and fibrosis. HPMCs treated with IL-17A revealed changes to a spindle-like morphology, decreased E-cadherin expression, and increased α-SMA expression through STAT3 phosphorylation. Moreover, HPMCs treated with IL-17A showed increased migration. Conclusions IL-17A derived from mast cells contributes to tumor fibrosis in peritoneal dissemination of gastric cancer. Inhibiting degranulation of mast cells might be a promising treatment strategy to control organ fibrosis.

Author(s):  
Hui Ling ◽  
Liang-Yun Zhang ◽  
Qi Su ◽  
Ying Song ◽  
Zhao-Yang Luo ◽  
...  

AbstractDiallyl disulfide (DADS) is a major constituent of garlic. Previously, we found that DADS both inhibited proliferation in human gastric cancer cells in vitro and in vivo, and induced G2/M arrest. In this study, we investigated whether this differentiation effect was induced by DADS in human gastric cancer MGC803 cells, and whether it was related to an alteration in ERK activity. The results showed that the growth of MGC803 cells was inhibited by DADS. Cells treated with DADS displayed a lower nucleocytoplasmic ratio and tended to form gland and intercellular conjunction structures. The ConA-mediated cell agglutination ratio and cells’ ALP specific activity decreased. In MGC803 cells, dye transfer was limited to a few cells neighbouring the dye-injected cell and to a depth of 1–2 layers beneath the scrape site. However, after treatment with DADS, the LY (Lucifer Yellow) was transferred to several cells immediately neighbouring the microinjected cell and to a depth of 2–4 cell layers from the scrape site. This indicated that DADS induced differentiation in MGC803 cells. Western blot analysis revealed that although DADS did not influence the quantity of ERK1/2 protein expressed, it did decrease its phosphorylation in a concentration-dependent manner, compared with the controls. At 30 mg·L−1, DADS inhibited the activation of ERK1/2 in 15–30 min. These results suggested that the DADS-induced differentiation of MGC803 cells involved an alteration of the ERK1/2 signaling pathway.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Lu Zhang ◽  
Fei Zheng ◽  
Zhigang Peng ◽  
Zijing Hu ◽  
Zhi Yang

Background. Cancer stem cell (CSC) promotes angiogenesis which plays an important role in tumor occurrence, growth, and metastasis. Accurately, quantifying the tumor vasculature can help understanding CSC characteristics and improve cancer diagnosis, therapy planning, and evaluation. The objective of this study is to present a method for improved angiogenesis assessment. Methods. We proposed a three-dimensional microvessel density (3D MVD) to evaluate tumor angiogenesis and tested it in animal models. Six male Balb/c nude mice were divided into normal group and tumor group. The mice in tumor group were orthotopically implanted human gastric cancer, cell line BGC-823. The phase-contrast images were collected at Shanghai Synchrotron Radiation Facility BL13W beamline, which has much higher soft-tissue contrast and spatial resolution than conventional X-ray. After volume reconstruction and vessel extraction, the 3D models of the angiogenesis were established for MVD calculation. Results. The results showed that the proposed 3D MVD is positively correlated with the pathological changes of the microvessels. It took the advantage of high resolution of the phase-contrast imaging and added three-dimensional information to the existing MVD measure. Conclusions. Our study presents a feasible approach for better understanding of tumor angiogenesis. It may provide doctors and scientists a better tool for cancer investigation and improving medical outcomes.


Sign in / Sign up

Export Citation Format

Share Document