scholarly journals Erk is involved in the differentiation induced by diallyl disulfide in the human gastric cancer cell line MGC803

Author(s):  
Hui Ling ◽  
Liang-Yun Zhang ◽  
Qi Su ◽  
Ying Song ◽  
Zhao-Yang Luo ◽  
...  

AbstractDiallyl disulfide (DADS) is a major constituent of garlic. Previously, we found that DADS both inhibited proliferation in human gastric cancer cells in vitro and in vivo, and induced G2/M arrest. In this study, we investigated whether this differentiation effect was induced by DADS in human gastric cancer MGC803 cells, and whether it was related to an alteration in ERK activity. The results showed that the growth of MGC803 cells was inhibited by DADS. Cells treated with DADS displayed a lower nucleocytoplasmic ratio and tended to form gland and intercellular conjunction structures. The ConA-mediated cell agglutination ratio and cells’ ALP specific activity decreased. In MGC803 cells, dye transfer was limited to a few cells neighbouring the dye-injected cell and to a depth of 1–2 layers beneath the scrape site. However, after treatment with DADS, the LY (Lucifer Yellow) was transferred to several cells immediately neighbouring the microinjected cell and to a depth of 2–4 cell layers from the scrape site. This indicated that DADS induced differentiation in MGC803 cells. Western blot analysis revealed that although DADS did not influence the quantity of ERK1/2 protein expressed, it did decrease its phosphorylation in a concentration-dependent manner, compared with the controls. At 30 mg·L−1, DADS inhibited the activation of ERK1/2 in 15–30 min. These results suggested that the DADS-induced differentiation of MGC803 cells involved an alteration of the ERK1/2 signaling pathway.

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yu-hao Teng ◽  
Jie-pin Li ◽  
Shen-lin Liu ◽  
Xi Zou ◽  
Liang-hua Fang ◽  
...  

Raddeanin A (RA) is an extractive fromAnemone raddeana Regel, a traditional Chinese medicine. The aim of this study is to assess the efficacy of RA against human gastric cancer (GC) cells (SGC-7901) and explore its mechanism. MTT assay showed that RA inhibition of proliferation of SGC-7901 cells increased in a dose-dependent manner. Flow cytometry analysis and Hoechst 33258 staining showed that RA induced apoptosis on SGC-7901 cells. Meanwhile, it induced autophagy. Western blotting analysis showed that the RA induces apoptosis and autophagy by activating p38 MAPK pathway and inhibiting mTOR pathway. Further studies showed that autophagy inhibition could protect from RA-induced apoptosis in SGC-7901 cells. In conclusion, RA can induce SGC-7901 cell apoptosis and autophagy by activating p38 MAPK pathway. And autophagy can protect SGC-7901 cells from apoptosis induced by RA.


2012 ◽  
Vol 30 (4) ◽  
pp. 987-994 ◽  
Author(s):  
Takeshi Kanno ◽  
Takaaki Nishimoto ◽  
Yumiko Fujita ◽  
Akinobu Gotoh ◽  
Takashi Nakano ◽  
...  

2021 ◽  
Author(s):  
Juan Luo ◽  
Luyan Bai ◽  
Jun Tao ◽  
Yu Wen ◽  
Mingke Li ◽  
...  

Abstract Background Vacuolating cytotoxin (VacA) is an important virulence factor of Helicobacter pylori (H. pylori). It was previously believed that VacA can trigger the cascade of apoptosis on mitochondria to lead to cell apoptosis. Recently, it was found that VacA can induce autophagy. However, the molecular mechanism by which VacA induces autophagy is largely unknown. Objective We aimed to explore the molecular mechanism of autophagy induced by H. pylori in gastric cancer cells and the effect of autophagy on the survival of gastric cancer cells. Methods The autophagy of human gastric cancer cell line SGC7901 was detected by Western blot and RT-PCR in the treatment of VacA protein of H. pylori. The relationship between autophagy and reactive oxygen species (ROS) in the proliferation of gastric cancer cells were studied by gene expression silences (siRNA) and CM-H2DCFDA (DCF) staining. Results The results showed that VacA protein secreted by H. pylori in the supernatant stimulated autophagy in SGC7901 cells. After VacA protein treatment, the mRNA expressions of BECN1, ATG7 and PIK3C3, were up-regulated. ATG7 silencing by siRNA inhibited VacA-induced autophagy. Furthermore, our data demonstrated that VacA protein increased ROS levels. Addition of the antioxidant N-acetyl-l-cysteine (NAC) suppressed the levels of ROS, leading to inhibition of autophagy. Conclusions H. pylori VacA is a key toxin that induces autophagy by increased ROS levels. And our findings demonstrated that VacA significantly inhibited proliferation in SGC7901 cells.


2008 ◽  
Vol 294 (1) ◽  
pp. G336-G343 ◽  
Author(s):  
Koichi Yano ◽  
Takashi Imaeda ◽  
Tomoaki Niimi

Claudin-18 ( CLDN18), a member of the claudin family of proteins that are structural components of tight junctions, has two alternatively spliced variants, claudin-18a1 and claudin-18a2, which are highly expressed in lung and stomach, respectively. Downregulation of claudin-18a2 is associated with gastric cancers of an intestinal phenotype; however, the mechanisms regulating its expression have not been defined. Here, we found that phorbol 12-myristate 13-acetate (PMA) treatment of MKN45 human gastric cancer cell line increased claudin-18a2 expression. In addition, this study aimed to characterize the human CLDN18a2 promoter. Using reporter gene assays and deletion analysis, we mapped the critical promoter region of the PMA-stimulated claudin-18a2 expression to the −923/−286 region. Electrophoretic mobility shift assays and mutational analyses revealed that two activator protein (AP)-1 binding sites played an important role in the expression of claudin-18a2 in PMA-stimulated MKN45 cells. Protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) inhibitors suppressed the upregulation of claudin-18a2. These results indicate that the PKC/MAPK/AP-1 dependent pathway regulates claudin-18a2 expression in gastric cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Miaoliang Chen ◽  
Ying Lu ◽  
Ruili Zhang ◽  
Tienan Bi ◽  
Shenkang Zhou

Objective. To study the effects of Huaier polysaccharide SP1 on the proliferation, apoptosis, migration, and invasion of gastric cancer cell line MGC-803 and the underlying mechanism. Methods. MGC-803 cells were cultured in vitro and treated with SP1. The effects of SP1 on the proliferation, apoptosis, migration, and invasion of MGC-803 cells were detected by CCK-8 assay, flow cytometry analysis, and Transwell assay, respectively. Western blot and qRT-PCR were used to detect the expression of related genes. Results. Our study showed that Huaier polysaccharide SP1 could inhibit proliferation, migration, invasion, and promote the apoptosis of MGC-803 cells in vitro in a dose-dependent manner. Huaier polysaccharide SP1 could inhibit the activation of TGF-β/SMAD signal pathway by upregulating SMAD7 expression, thereby downregulating the expression of SOX4, ZEB2, MMP9, Snail, and Slug. Conclusion. Huaier polysaccharide SP1 can regulate the proliferation, apoptosis, migration, and invasion of gastric cancer cells by promoting the expression of SMAD7 and inhibiting the activation of TGF-β/SMAD signal pathway as well as the expression of the downstream oncogenes.


Oncogenesis ◽  
2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Linlin Tao ◽  
Haoyuan Yu ◽  
Rui Liang ◽  
Ru Jia ◽  
Jingjing Wang ◽  
...  

Abstract Rev-erbα is a nuclear receptor, which regulates circadian rhythm, inflammatory responses and lipid metabolism. We previously showed Rev-erbα reduction in human gastric cancer, which is associated with TMN stages and poor prognosis. We hypothesized that Rev-erbα modulates proliferation via glycolytic flux and the pentose phosphate pathway (PPP) in gastric cancer. Knockdown of Rev-erbα significantly increased proliferation as well as glycolytic flux and the PPP in human gastric cancer cells. These effects were reduced by a Rev-erbα agonist GSK4112 in a dose-dependent manner. Furthermore, Rev-erbα was recruited on the promoters of PFKFB3 and G6PD genes, thereby inhibiting their gene transcription. GSK4112 treatment reduced PFKFB3 and G6PD gene expression, which was not affected by BMAL1 knockdown. Pharmacological inhibition of glycolysis and the PPP using corresponding PFKFB3 and G6PD inhibitors attenuated Rev-erbα knockdown-induced proliferation in gastric cancer cells. GSK4112 treatment was not able to reduce proliferation in SGC-7901 overexpressing both PFKFB3 and G6PD genes. Both PFKFB3 and G6PD were overexpressed in patients with gastric cancer, and positively correlated with the TMN stages. The PPP and glycolysis were enhanced in gastric cancer tissues of patients with low expression of Rev-erbα compared to the patients with high expression of Rev-erbα. In conclusion, Rev-erbα reduction causes gastric cancer progression by augmenting the PPP and glycolysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yu Zhou ◽  
Shan Xu ◽  
Jiao Liu ◽  
Yaping Zhu ◽  
Yaxin Zhu ◽  
...  

GKN2 (gastrokine 2) mainly plays a regulatory role in gastric mucosal defense and cell protection mechanisms, and its role in gastric cancer has not been thoroughly elucidated. Immunohistochemistry was used to detect GKN2 and TFF1 expressions in 90 gastric cancer tissues, 48 neoplastic resection margins, and 22 normal gastric mucosa epithelia. It showed that the downregulation of GKN2 and TFF1 expressions in gastric cancer tissues was significantly different from that in adjacent normal gastric tissues and distal gastric mucosal tissues. Nevertheless, correlation analysis showed that GKN2 expression in gastric cancer tissues was independent of TFF1 expression. After overexpression of GKN2 was constructed in human gastric cancer cell line MKN28 with the Ad-GFP-GKN2 transfected, cell viability was measured by CCK-8 assay, and migration and invasion ability were analyzed by transwell migration assay and transwell invasion assay. It indicated that overexpression of GKN2 significantly reduced the viability of MKN28 and SGC7901 cells. Overexpression of GKN2 could also inhibit the migration and invasion ability in MKN28 and SGC7901 cells. In addition, upregulation of GKN2 can inactivate the JAK2/STAT3 pathway. Our data suggest that GKN2 and TFF1 play the antitumor role in gastric carcinoma, and TFF1 may not interact or cooperate with GKN2. GKN2 overexpression can inhibit the growth and metastasis by downregulating the JAK2/STAT3 pathway in gastric cancer cells.


Sign in / Sign up

Export Citation Format

Share Document