Comparative proteomics reveals differential induction of both biotic and abiotic stress response associated proteins in rice during Xanthomonas oryzae pv. oryzae infection

2015 ◽  
Vol 15 (4) ◽  
pp. 425-437 ◽  
Author(s):  
Anirudh Kumar ◽  
Waikhom Bimolata ◽  
Monica Kannan ◽  
P. B. Kirti ◽  
Insaf Ahmed Qureshi ◽  
...  
Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1949
Author(s):  
Tian Fan ◽  
Tianxiao Lv ◽  
Chuping Xie ◽  
Yuping Zhou ◽  
Changen Tian

Members of the IQM (IQ-Motif Containing) gene family are involved in plant growth and developmental processes, biotic and abiotic stress response. To systematically analyze the IQM gene family and their expression profiles under diverse biotic and abiotic stresses, we identified 8 IQM genes in the rice genome. In the current study, the whole genome identification and characterization of OsIQMs, including the gene and protein structure, genome localization, phylogenetic relationship, gene expression and yeast two-hybrid were performed. Eight IQM genes were classified into three subfamilies (I–III) according to the phylogenetic analysis. Gene structure and protein motif analyses showed that these IQM genes are relatively conserved within each subfamily of rice. The 8 OsIQM genes are distributed on seven out of the twelve chromosomes, with three IQM gene pairs involved in segmental duplication events. The evolutionary patterns analysis revealed that the IQM genes underwent a large-scale event within the last 20 to 9 million years. In addition, quantitative real-time PCR analysis of eight OsIQMs genes displayed different expression patterns at different developmental stages and in different tissues as well as showed that most IQM genes were responsive to PEG, NaCl, jasmonic acid (JA), abscisic acid (ABA) treatment, suggesting their crucial roles in biotic, and abiotic stress response. Additionally, a yeast two-hybrid assay showed that OsIQMs can interact with OsCaMs, and the IQ motif of OsIQMs is required for OsIQMs to combine with OsCaMs. Our results will be valuable to further characterize the important biological functions of rice IQM genes.


2021 ◽  
Author(s):  
Yi-Ju Lu ◽  
Huan Chen ◽  
Alex Corrion ◽  
Pai Li ◽  
Ilker Buyuk ◽  
...  

NON-RACE-SPECIFIC DISEASE RISISTANCE1 (NDR1) is a key component of plant immune signaling, required for defense against the bacterial pathogen Pseudomonas syringae. Plant stress responses have overlapping molecular, physiological, and cell biology signatures, and given the central role of NDR1 during biotic stress perception and signaling, we hypothesized that NDR1 also functions in abiotic stress responses, including in a role that mediates signaling at the plasma membrane (PM) - cell wall (CW) continuum. Here, we demonstrate that NDR1 is required for the induction of drought stress responses in plants, a role that couples stress signaling in an abscisic acid-dependent manner. We show that NDR1 physically associates with the PM-localized H+-ATPases AHA1, AHA2 , and AHA5 and is required for proper regulation of H+-ATPase activity and stomatal guard cell dynamics, providing a mechanistic function of NDR1 during drought responses. In the current study, we demonstrate that NDR1 functions in signaling processes associated with both biotic and abiotic stress response pathways, a function we hypothesize represents NDR1's role in the maintenance of cellular homeostasis during stress. We propose a role for NDR1 as a core transducer of signaling between cell membrane processes and intercellular stress response activation.


2021 ◽  
Vol 22 (23) ◽  
pp. 12917
Author(s):  
Naresh Vasupalli ◽  
Dan Hou ◽  
Rahul Mohan Singh ◽  
Hantian Wei ◽  
Long-Hai Zou ◽  
...  

Lignin biosynthesis enzymes form complexes for metabolic channelling during lignification and these enzymes also play an essential role in biotic and abiotic stress response. Cinnamyl alcohol dehydrogenase (CAD) is a vital enzyme that catalyses the reduction of aldehydes to alcohols, which is the final step in the lignin biosynthesis pathway. In the present study, we identified 49 CAD enzymes in five Bambusoideae species and analysed their phylogenetic relationships and conserved domains. Expression analysis of Moso bamboo PheCAD genes in several developmental tissues and stages revealed that among the PheCAD genes, PheCAD2 has the highest expression level and is expressed in many tissues and PheCAD1, PheCAD6, PheCAD8 and PheCAD12 were also expressed in most of the tissues studied. Co-expression analysis identified that the PheCAD2 positively correlates with most lignin biosynthesis enzymes, indicating that PheCAD2 might be the key enzyme involved in lignin biosynthesis. Further, more than 35% of the co-expressed genes with PheCADs were involved in biotic or abiotic stress responses. Abiotic stress transcriptomic data (SA, ABA, drought, and salt) analysis identified that PheCAD2, PheCAD3 and PheCAD5 genes were highly upregulated, confirming their involvement in abiotic stress response. Through yeast two-hybrid analysis, we found that PheCAD1, PheCAD2 and PheCAD8 form homo-dimers. Interestingly, BiFC and pull-down experiments identified that these enzymes form both homo- and hetero- dimers. These data suggest that PheCAD genes are involved in abiotic stress response and PheCAD2 might be a key lignin biosynthesis pathway enzyme. Moreover, this is the first report to show that three PheCAD enzymes form complexes and that the formation of PheCAD homo- and hetero- dimers might be tissue specific.


2016 ◽  
pp. pp.00035.2016 ◽  
Author(s):  
Elizabeth Kalinda Brauer ◽  
Nagib Ahsan ◽  
Renee Dale ◽  
Naohiro Kato ◽  
Alison E Coluccio ◽  
...  

2014 ◽  
Vol 78 (6) ◽  
pp. 951-963 ◽  
Author(s):  
Ananda Mustafiz ◽  
Ajit Ghosh ◽  
Amit K. Tripathi ◽  
Charanpreet Kaur ◽  
Akshay K. Ganguly ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document