Thermal, ultrasonic and electrochemical pretreatment methods to enhance the solubilization of organic substance and methane generation in food waste

2020 ◽  
Vol 22 (5) ◽  
pp. 1418-1426 ◽  
Author(s):  
T. U. Habarakada Liyanage ◽  
S. Babel
2018 ◽  
Vol 72 ◽  
pp. 218-226 ◽  
Author(s):  
Meijuan Yu ◽  
Mingxing Zhao ◽  
Zhenxing Huang ◽  
Kezhong Xi ◽  
Wansheng Shi ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1018
Author(s):  
Vijayalakshmi Arelli ◽  
Sudharshan Juntupally ◽  
Sameena Begum ◽  
Gangagni Rao Anupoju

The aim of this study was to treat food waste containing 25% total solids (TS) through dry anaerobic digestion (dry AD) process at various pressures (0.5 to 2.5 kg/cm2) and different time duration (20 to 100 min) to understand the impact of pretreatment in enhancing the methane generation potential along with insights on scale up. The findings revealed that vs. reduction and methane yield of 60% and 0.25 L CH4/(g VSadded) can be achieved with pretreated food waste at two kilograms per square centimeter, while pretreatment of food waste at 2 kg/cm2 for 100 min enhanced the vs. reduction from 60% to 85% and methane yield from 0.25 to 0.368 L CH4/(g VSadded). However, the net energy indicated that 40 min of pre -treatment at two kilograms per square centimeter can be a suitable option as methane yield and vs. reduction of 0.272 L CH4/(g VSadded) and 70%, respectively was achieved. The vs. reduction and the methane yield of 45% and 0.14 L CH4/(g VSadded), respectively was obtained from untreated food waste which illustrated that pretreatment had significantly impacted on the enhancement of methane generation and organic matter removal which can make the dry AD process more attractive and feasible at commercial scale.


2014 ◽  
Vol 953-954 ◽  
pp. 246-250
Author(s):  
Apina Chanthakett ◽  
Supawat Vivanpatarakij

The study of biogas production was conducted to find effective fermentation which will enhance digester gas manufacturing system and reduce waste in military areas. Co-digester between food wastes with pig manure was studied. The experiment was divided into three proportions of food waste and manure based on dry matter mass. The first is 100:0 which contains 26 kg. of food waste. The second is 85:15 which was composed of 22 kg. of food per 4 kg. of pig manure. And the third is 70:30 which contains 18 kg. of food per 8 kg. of pig manure. Leavening agent for digester came from pig manure. The 21 day experiment was carried out to collect and analyze biogas samples. According to these results, the proportion 85:15 produced a large quantity of biogas which was 1,134 liters. Methane generation rate is increasing and hydrogen is also high as 32.26%. The heating reached the highest value at 1.491 MJ. or 3.189 times compared to the proportion 100:0 in the experimental temperature of 31-33 °C


2019 ◽  
Vol 31 (11) ◽  
pp. 2575-2578
Author(s):  
M.N.I. Siddique ◽  
B.K. Zaied ◽  
M.N. Kabir ◽  
M.F. Ahmad

The valorization of agro-modern waste through anaerobic codigestion signifies a remarkable prospect for waste treatment and sustainable energy source generation. This study intended to improve the codigestion of food waste and petrochemical wastewater by an advanced two-phase process. In view of concentric acidogenic and methanogenic stages, intended for upgrading execution and diminishing pollution. The ideal food waste to petrochemical wastewater proportion was assessed under batch operations. From that point, codigestion was carried out by continuous feeding operations weighting single-and two-phase digestions. The outcomes exhibited that the supplementation of petrochemical wastewater in codigestion with food waste incredibly improved the anaerobic system. The maximum methane generation was acquired codigesting the two wastes at equivalent proportion by utilizing the creative two-phase system. The proposed framework achieved the highest methane production of 259 mL/g volatile solid, which is more than double than the single-phase system and 11 % greater than that of conventional two-phase system.


2021 ◽  
pp. 128390
Author(s):  
Rebeca Beltrão Valença ◽  
Liliana Andréa dos Santos ◽  
Alessandra Lee Barbosa Firmo ◽  
Leandro César Santos da Silva ◽  
Talita Vasconcelos de Lucena ◽  
...  

2018 ◽  
Vol 36 (10) ◽  
pp. 965-974 ◽  
Author(s):  
Sophia Ghanimeh ◽  
Charbel Abou Khalil ◽  
Elsy Ibrahim

A mesophilic anaerobic digester, followed by a psychrophilic aerobic post-treatment, was used to treat food waste (FW) with different proportions of fruit and vegetable waste (FVW). Two types of FW were used: low fruit and vegetable mix (LFV, with 56.5% of FVW) and high fruit and vegetable mix (HFV, with 78.3% of FVW). The anaerobic digester fed with LFV failed at an organic loading rate of 1.6 g VS.L-1.d-1 (volatile fatty acid (VFA) = 6000 mg.L-1) due to high ammonia (reaching 3000 mg.L-1). It was shown that, in an unstable anaerobic environment, ammonia is highly correlated ( r2 = 0.77) with VFA and is negatively correlated with volatile solids, total solids, and chemical oxygen demand (COD) removal rates ( r2 = 0.88, r2 = 0.71, and r2 = 0.91, respectively). In contrast, the anaerobic digester fed with HFV exhibited a stable performance (VFA = 1243 mg.L-1), with limited ammonia accumulation (940 mg.L-1). Methane generation was affected by the FVW content and reached 531 ml CH4.g VS-1 (CH4 = 52%) with LFV feed and 478 ml CH4.g VS-1 (CH4 = 57.4%) with HFV. The overall TS, VS and COD removal rates (all ranging between 94% and 97%), were closely similar for LFV and HFV. Accordingly, the aerobic post-treatment seems to compensate for the reduced performance of the disturbed anaerobic system fed with LFV.


2019 ◽  
Vol 37 (5) ◽  
pp. 461-468 ◽  
Author(s):  
K Valta ◽  
A Sotiropoulos ◽  
D Malamis ◽  
T Kosanovic ◽  
G Antonopoulou ◽  
...  

Household food waste management and treatment has been recognised as a significant issue worldwide and at a European Union level. Source-separation of household food waste following drying at source presents a viable solution to this problem. The present research aims at investigating the effect of drying of model household food waste at different temperatures (i.e. 63 ±3 °C and 83 ±3 °C) on its biochemical methane potential. The drying process was carried out using a prototype household waste dryer. The model sample consisted of 77%w/w vegetables and fruits (48%w/w and 29%w/w, respectively), 12%w/w pasta/rice, 6%w/w meat and fish, 3%w/w bread and bakery and 2%w/w dairy. Moreover, drying at the same temperatures was applied for two household food wastes samples with different composition, in order to assess the influence of the samples’ composition on both the drying process and the methane generation. For all temperatures used, the higher %w/w mass reduction was observed for model waste (MD) (67.39%w/w and 75.79%w/w for 63 °C and 83 °C, respectively), then for rich-in-protein content (PRO) (66.18%w/w and 69.73%w/w for 63 °C and 83 °C, respectively) and finally for rich-in-fat content (FAT) samples (54.35%w/w and 66.31%w/w for 63 °C and 83 °C, respectively), which confirmed the effectiveness of the drying process. The biochemical methane potential experiments have confirmed that the substrate produced the highest methane yields was the FAT, producing 524.25 ±2.86 L CH4 kg-1 volatile solids.


2018 ◽  
Vol 277 ◽  
pp. 202-212 ◽  
Author(s):  
Vyacheslav Lukinov ◽  
Vasyl Prykhodchenko ◽  
Oleksii Prykhodchenko ◽  
Valeriia Tykhonenko

Generalized data of paleotemperature conditions, elemental compositions, technological properties, density, and methane content of coals at different stages of methane generation in terms of catagenetic changes of coalbed organic substance have been studied. Theoretical calculations of changes in averages values of density of carbon atomic packing in natural formations ranging from lignite to anthracite, graphite, and diamond have been represented. Mechanism of the formation of reverse methane content of anthracites at the expense of carbon restructuring of coal, increase in density of carbon atomic packing, and involvement of occluded methane and radicals of СН3 group in the process of anthracite polymerization has been substantiated.


Sign in / Sign up

Export Citation Format

Share Document