scholarly journals Remarks on the 3D Stokes eigenvalue problem under Navier boundary conditions

Author(s):  
Alessio Falocchi ◽  
Filippo Gazzola

AbstractWe study the Stokes eigenvalue problem under Navier boundary conditions in $$C^{1,1}$$ C 1 , 1 -domains $$\Omega \subset \mathbb {R}^3$$ Ω ⊂ R 3 . Differently from the Dirichlet boundary conditions, zero may be the least eigenvalue. We fully characterize the domains where this happens and we show that the ball is the unique domain where the zero eigenvalue is not simple, it has multiplicity three. We apply these results to show the validity/failure of a suitable Poincaré-type inequality. The proofs are obtained by combining analytic and geometric arguments.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ariel Salort

<p style='text-indent:20px;'>In this article we consider the following weighted nonlinear eigenvalue problem for the <inline-formula><tex-math id="M1">\begin{document}$ g- $\end{document}</tex-math></inline-formula>Laplacian</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ -{\text{ div}}\left( g(|\nabla u|)\frac{\nabla u}{|\nabla u|}\right) = \lambda w(x) h(|u|)\frac{u}{|u|} \quad \text{ in }\Omega\subset \mathbb R^n, n\geq 1 $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with Dirichlet boundary conditions. Here <inline-formula><tex-math id="M2">\begin{document}$ w $\end{document}</tex-math></inline-formula> is a suitable weight and <inline-formula><tex-math id="M3">\begin{document}$ g = G' $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ h = H' $\end{document}</tex-math></inline-formula> are appropriated Young functions satisfying the so called <inline-formula><tex-math id="M5">\begin{document}$ \Delta' $\end{document}</tex-math></inline-formula> condition, which includes for instance logarithmic perturbation of powers and different power behaviors near zero and infinity. We prove several properties on its spectrum, being our main goal to obtain lower bounds of eigenvalues in terms of <inline-formula><tex-math id="M6">\begin{document}$ G $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ H $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M8">\begin{document}$ w $\end{document}</tex-math></inline-formula> and the normalization <inline-formula><tex-math id="M9">\begin{document}$ \mu $\end{document}</tex-math></inline-formula> of the corresponding eigenfunctions.</p><p style='text-indent:20px;'>We introduce some new strategies to obtain results that generalize several inequalities from the literature of <inline-formula><tex-math id="M10">\begin{document}$ p- $\end{document}</tex-math></inline-formula>Laplacian type eigenvalues.</p>



2019 ◽  
Vol 22 (08) ◽  
pp. 1950071 ◽  
Author(s):  
Laura Abatangelo ◽  
Veronica Felli ◽  
Benedetta Noris

We consider the eigenvalue problem for the restricted fractional Laplacian in a bounded domain with homogeneous Dirichlet boundary conditions. We introduce the notion of fractional capacity for compact subsets, with the property that the eigenvalues are not affected by the removal of zero fractional capacity sets. Given a simple eigenvalue, we remove from the domain a family of compact sets which are concentrating to a set of zero fractional capacity and we detect the asymptotic expansion of the eigenvalue variation; this expansion depends on the eigenfunction associated to the limit eigenvalue. Finally, we study the case in which the family of compact sets is concentrating to a point.



Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 850 ◽  
Author(s):  
Mohamed Jleli ◽  
Bessem Samet

We consider a coupled system of partial differential equations involving Laplacian operator, on a rectangular domain with zero Dirichlet boundary conditions. A Lyapunov-type inequality related to this problem is derived. This inequality provides a necessary condition for the existence of nontrivial positive solutions.



2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Eva Llabrés

Abstract We find the most general solution to Chern-Simons AdS3 gravity in Fefferman-Graham gauge. The connections are equivalent to geometries that have a non-trivial curved boundary, characterized by a 2-dimensional vielbein and a spin connection. We define a variational principle for Dirichlet boundary conditions and find the boundary stress tensor in the Chern-Simons formalism. Using this variational principle as the departure point, we show how to treat other choices of boundary conditions in this formalism, such as, including the mixed boundary conditions corresponding to a $$ T\overline{T} $$ T T ¯ -deformation.



2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Adrien Fiorucci ◽  
Romain Ruzziconi

Abstract The gravitational charge algebra of generic asymptotically locally (A)dS spacetimes is derived in n dimensions. The analysis is performed in the Starobinsky/Fefferman-Graham gauge, without assuming any further boundary condition than the minimal falloffs for conformal compactification. In particular, the boundary structure is allowed to fluctuate and plays the role of source yielding some symplectic flux at the boundary. Using the holographic renormalization procedure, the divergences are removed from the symplectic structure, which leads to finite expressions. The charges associated with boundary diffeomorphisms are generically non-vanishing, non-integrable and not conserved, while those associated with boundary Weyl rescalings are non-vanishing only in odd dimensions due to the presence of Weyl anomalies in the dual theory. The charge algebra exhibits a field-dependent 2-cocycle in odd dimensions. When the general framework is restricted to three-dimensional asymptotically AdS spacetimes with Dirichlet boundary conditions, the 2-cocycle reduces to the Brown-Henneaux central extension. The analysis is also specified to leaky boundary conditions in asymptotically locally (A)dS spacetimes that lead to the Λ-BMS asymptotic symmetry group. In the flat limit, the latter contracts into the BMS group in n dimensions.



2021 ◽  
pp. 104123
Author(s):  
Firdous A. Shah ◽  
Mohd Irfan ◽  
Kottakkaran S. Nisar ◽  
R.T. Matoog ◽  
Emad E. Mahmoud


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Stegliński

Abstract The aim of this paper is to extend results from [A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal. 237 (2006), 1, 176–193] about Lyapunov-type inequalities for linear partial differential equations to nonlinear partial differential equations with 𝑝-Laplacian with zero Neumann or Dirichlet boundary conditions.



Sign in / Sign up

Export Citation Format

Share Document