Study on subtidal circulation and variability in the Gulf of St. Lawrence, Scotian Shelf, and Gulf of Maine using a nested-grid shelf circulation model

2014 ◽  
Vol 64 (3) ◽  
pp. 385-412 ◽  
Author(s):  
Jorge Urrego-Blanco ◽  
Jinyu Sheng
2018 ◽  
Author(s):  
Krysten Rutherford ◽  
Katja Fennel

Abstract. The circulation in the northwestern North Atlantic Ocean is highly complex, characterized by the confluence of two major western boundary current systems and several shelf currents. Here we present the first comprehensive analysis of transport paths and timescales for the northwestern North Atlantic shelf, which is useful for estimating ventilation rates, describing circulation and mixing, characterizing the composition of water masses with respect to different source regions, and elucidating rates and patterns of biogeochemical processing, species dispersal and genetic connectivity. Our analysis uses dye and age tracers within a high-resolution circulation model of the region, divided into 9 sub-regions, to diagnose retention times, transport pathways, and transit times. Retention times are shortest on the Scotian Shelf (~ 3 months) where the inshore and shelf-break branches of the coastal current system result in high along-shelf transport to the southwest. Larger retention times are simulated on the Grand Banks (~ 4 months), in the Gulf of St. Lawrence (~ 12 months) and the Gulf of Maine (~ 6 months). Source water analysis shows that Scotian Shelf water is primarily comprised of waters from the Grand Banks and Gulf of St. Lawrence, with varying composition across the shelf. Contributions from the Gulf of St. Lawrence are larger at near-shore locations, whereas locations near the shelf break have larger contributions from the Grand Banks and slope waters. Waters from the deep slope have little connectivity with the shelf, because the shelf-break current inhibits transport across the shelf break. Grand Banks and Gulf of St. Lawrence waters are therefore dominant controls on biogeochemical properties, and on setting and sustaining planktonic communities on the Scotian Shelf.


2009 ◽  
Vol 29 (17) ◽  
pp. 2138-2156 ◽  
Author(s):  
Kyoko Ohashi ◽  
Jinyu Sheng ◽  
Keith R. Thompson ◽  
Charles G. Hannah ◽  
Harold Ritchie

2016 ◽  
Vol 46 (11) ◽  
pp. 3279-3298 ◽  
Author(s):  
Anna Katavouta ◽  
Keith R. Thompson ◽  
Youyu Lu ◽  
John W. Loder

AbstractAs part of a broader study of ocean downscaling, the seasonal and tidal variability of the Gulf of Maine and Scotian shelf, and their dynamical interaction, are investigated using a high-resolution (1/36°) circulation model. The model’s seasonal hydrography and circulation, and its tidal elevations and currents, are compared with an observed seasonal climatology, local observations, and results from previous studies. Numerical experiments with and without density stratification demonstrate the influence of stratification on the tides. The model is then used to interpret the physical mechanisms responsible for the largest seasonal variations in the M2 surface current that occur over, and to the north of, Georges Bank. The model generates a striation pattern of alternating highs and lows, aligned with Georges Bank, in the M2 surface summer maximum speed in the Gulf of Maine. The striations are consistent with observations by a high-frequency coastal radar system and can be explained in terms of a linear superposition of the barotropic tide and the first-mode baroclinic tide, generated on the north side of Georges Bank, as it propagates into the Gulf of Maine. The seasonal changes in tidal currents in the well-mixed area on Georges Bank are due to a combination of increased sea level gradients, and lower vertical viscosity, in summer.


Ocean Science ◽  
2018 ◽  
Vol 14 (5) ◽  
pp. 1207-1221 ◽  
Author(s):  
Krysten Rutherford ◽  
Katja Fennel

Abstract. The circulation in the northwestern North Atlantic Ocean is highly complex, characterized by the confluence of two major western boundary current systems and several shelf currents. Here we present the first comprehensive analysis of transport paths and timescales for the northwestern North Atlantic shelf, which is useful for estimating ventilation rates, describing circulation and mixing, characterizing the composition of water masses with respect to different source regions, and elucidating rates and patterns of biogeochemical processing, species dispersal, and genetic connectivity. Our analysis uses dye and age tracers within a high-resolution circulation model of the region, divided into nine subregions, to diagnose retention times, transport pathways, and transit times. Retention times are shortest on the Scotian Shelf (∼ 3 months), where the inshore and shelf-break branches of the coastal current system result in high along-shelf transport to the southwest, and on the Grand Banks (∼ 3 months). Larger retention times are simulated in the Gulf of St. Lawrence (∼ 12 months) and the Gulf of Maine (∼ 6 months). Source water analysis shows that Scotian Shelf water is primarily comprised of waters from the Grand Banks and Gulf of St. Lawrence, with varying composition across the shelf. Contributions from the Gulf of St. Lawrence are larger at near-shore locations, whereas locations near the shelf break have larger contributions from the Grand Banks and slope waters. Waters from the deep slope have little connectivity with the shelf, because the shelf-break current inhibits transport across the shelf break. Grand Banks and Gulf of St. Lawrence waters are therefore dominant controls on biogeochemical properties, and on setting and sustaining planktonic communities on the Scotian Shelf.


2019 ◽  
Vol 49 (2) ◽  
pp. 329-352 ◽  
Author(s):  
Pengcheng Wang ◽  
Zhongjie He ◽  
Keith R. Thompson ◽  
Jinyu Sheng

AbstractNear-inertial oscillations (NIOs) on the inner Scotian shelf are studied using observations, a simple slab model, and two operational shelf circulation models. High-frequency radar and ADCP observations from December 2015 to February 2016 show that individual NIO events forced by time-varying wind stress typically lasted for three to four inertial periods. NIOs with speeds exceeding 0.25 m s−1 were observed in the offshore part of the study region, but their amplitudes decreased shoreward within ~40 km of the coast. The NIOs had spatial scales of ~80 and ~40 km in the alongshore and cross-shore directions, respectively. The NIO phases varied moving from west to east, consistent with the typical movement of winter storms across the study region. Evolving rotary spectral analysis reveals that the peak frequency fp of the NIOs varied with time by ~7% of the local inertial frequency. The variation in fp can be explained in part by local wind forcing as demonstrated by the slab model. The remaining variation in fp can be explained in part by variations in the background vorticity associated with changes in the strength and position of the Nova Scotia Current, an unstable baroclinic boundary current that runs along the coast to the southwest. Two operational shelf circulation models are used to examine the abovementioned features in the high-frequency-radar and ADCP observations. The models reproduce the spatial structure of the NIOs and, in a qualitative sense, the temporal variations of fp.


Elem Sci Anth ◽  
2017 ◽  
Vol 5 ◽  
Author(s):  
Andrew C. Thomas ◽  
Andrew J. Pershing ◽  
Kevin D. Friedland ◽  
Janet A. Nye ◽  
Katherine E. Mills ◽  
...  

The northeastern North American continental shelf from Cape Hatteras to the Scotian Shelf is a region of globally extreme positive trends in sea surface temperature (SST). Here, a 33-year (1982–2014) time series of daily satellite SST data was used to quantify and map spatial patterns in SST trends and phenology over this shelf. Strongest trends are over the Scotian Shelf (>0.6°C decade–1) and Gulf of Maine (>0.4°C decade–1) with weaker trends over the inner Mid-Atlantic Bight (~0.3°C decade–1). Winter (January–April) trends are relatively weak, and even negative in some areas; early summer (May–June) trends are positive everywhere, and later summer (July–September) trends are strongest (~1.0°C decade–1). These seasonal differences shift the phenology of many metrics of the SST cycle. The yearday on which specific temperature thresholds (8° and 12°C) are reached in spring trends earlier, most strongly over the Scotian Shelf and Gulf of Maine (~ –0.5 days year–1). Three metrics defining the warmest summer period show significant trends towards earlier summer starts, later summer ends and longer summer duration over the entire study region. Trends in start and end dates are strongest (~1 day year–1) over the Gulf of Maine and Scotian Shelf. Trends in increased summer duration are >2.0 days year–1 in parts of the Gulf of Maine. Regression analyses show that phenology trends have regionally varying links to the North Atlantic Oscillation, to local spring and summer atmospheric pressure and air temperature and to Gulf Stream position. For effective monitoring and management of dynamically heterogeneous shelf regions, the results highlight the need to quantify spatial and seasonal differences in SST trends as well as trends in SST phenology, each of which likely has implications for the ecological functioning of the shelf.


Sign in / Sign up

Export Citation Format

Share Document