scholarly journals Linking remote sensing parameters to CO2 assimilation rates at a leaf scale

Author(s):  
Kouki Hikosaka ◽  
Katsuto Tsujimoto

AbstractSolar-induced chlorophyll fluorescence (SIF) and photochemical reflectance index (PRI) are expected to be useful for remote sensing of photosynthetic activity at various spatial scales. This review discusses how chlorophyll fluorescence and PRI are related to the CO2 assimilation rate at a leaf scale. Light energy absorbed by photosystem II chlorophylls is allocated to photochemistry, fluorescence, and heat dissipation evaluated as non-photochemical quenching (NPQ). PRI is correlated with NPQ because it reflects the composition of xanthophylls, which are involved in heat dissipation. Assuming that NPQ is uniquely related to the photochemical efficiency (quantum yield of photochemistry), photochemical efficiencies can be assessed from either chlorophyll fluorescence or PRI. However, this assumption may not be held under some conditions such as low temperatures and photoinhibitory environments. Even in such cases, photosynthesis may be estimated more accurately if both chlorophyll fluorescence and PRI are determined simultaneously. To convert from photochemical efficiency to CO2 assimilation, environmental responses in stomatal conductance also need to be considered. Models linking chlorophyll fluorescence and PRI with CO2 assimilation rates will contribute to understanding and future prediction of the global carbon cycle.

2021 ◽  
Vol 11 (1) ◽  
pp. 161-173
Author(s):  
Gabriella Nora Maria Giudici

Two chlorophyll fluorescence (ChlF) methods were used to study the effects of high light (photoinhibition) and dehydration, common stressors of the alpine environment, on primary photosynthetic processes in the moss Polytrichum commune from the Czech Republic, the Jeseníky Mountains. Photoinhibition (PI) was studied in fully hydrated thalli of P. commune and during the period of spontaneous desiccation. Time courses of Kautsky kinetics (KK) of ChlF and derived parameters: maximum quantum yield (FV/FM), effective quantum yeld (ΦPSII), and non-photochemical quenching parameters, were measured before and after the samples were treated with high light (1500 µmol m-2 s-1 PAR) for 60 min. Dehydration effects were tested in two sets of experiments with a Pulse-Amplitude-Modulation fluorometry (PAM) and Fast Chlorophyll Fluorescence induction curve (OJIP) techniques. In PAM tests, the desiccating samples were exposed to saturating light pulses every 10 min. in order to obtain ΦPSII and non-photochemical quenching (NPQ). In the second dehydration experiment, OJIP transients of ChlF were repeatedly recorded, OJIP-derived ChlF parameters were plotted against relative water content (RWC) monitored during desiccation. Combined ChF techniques provided insights into the mechanisms activated during P. commune desiccation, such as dissipation of excess absorbed energy through heat dissipation, and conformational changes or destructions of the light harvesting complexes. Combination of stressors resulted in amplified interference with the photosynthetic machinery, even when the added stressor (dehydration) was applied in low dose.


HortScience ◽  
2011 ◽  
Vol 46 (6) ◽  
pp. 895-900 ◽  
Author(s):  
Julián Miralles-Crespo ◽  
Juan Antonio Martínez-López ◽  
José Antonio Franco-Leemhuis ◽  
Sebastián Bañón-Arias

Physiological and biochemical indicators that reflect the responses of plants to chilling stress could be useful for identifying plant damage caused by freezing or other stresses. The objective of this study was to determine any relationship between changes in chlorophyll fluorescence and the appearance of visual symptoms resulting from freezing temperatures in two cultivars of oleander. In the least frost-sensitive cultivar (yellow oleander), freezing temperatures (–4 °C for 3 h) did not produce changes in the photochemical parameters. In the more frost-sensitive cultivar (pink oleander), non-photochemical quenching (NPQ) and the maximum photochemical efficiency of photosystem II (Fv/Fm) decreased after the same freezing treatment. The first of these potential indicators remained low, whereas the second steadily recovered during the 4 months after freezing simulation. The results suggest that measuring chlorophyll fluorescence may provide a rapid method for assessing freezing injury in oleander.


1988 ◽  
Vol 15 (2) ◽  
pp. 163 ◽  
Author(s):  
B Demmig ◽  
K Winter

Three components of non-photochemical fluorescence quenching were distinguished according to their response to irradiance and to their relaxation kinetics upon darkening. Two components of quenching were restricted to excessive irradiance and were interpreted to reflect radiationless dissipation. One relaxed rapidly upon darkening, and increased sharply when irradiance became excessive, i.e. as soon as net CO2 assimilation rate was no longer linearly related to irradiance, and attained a maximum value with only small further increases in irradiance. The second component relaxed slowly, increased mark- edly when the rapidly relaxing component had reached its maximum, and continued to increase linearly with increasing irradiance. The third component was already present at low irradiances, relaxed very slowly, and may be related to an altered distribution of excitation energy between PS II and PS I. Following exposure to weak illumination under conditions preventing photosynthetic electron transport (20 mbar O2, zero CO2), the reduction state of Q was initially high and decreased as non- photochemical fluorescence quenching indicative of radiationless dissipation developed. Subsequent to photoinhibitory treatments in high light and 20 mbar O2, zero CO2, an increased reduction state of Q as well as increased non-photochemical quenching of the two types indicative of increased heat dissipation was observed. In sunflower a lasting increase in the reduction state of Q was observed and fluorescence characteristics reflected photoinhibitory damage. In Nerium oleander, increased radiationless dissipation of the slowly relaxing type was the predominant response and the reduction state of Q was increased only transiently.


2016 ◽  
Vol 34 (1) ◽  
pp. 39-45
Author(s):  
Zihong Ye ◽  
Haifeng Cui ◽  
Xinxin An ◽  
Xiaoping Yu

ABSTRACT: The tumescent stems of Zizania latifolia are consumed as vegetable in southern and eastern Asia. This study aimed to compare photosynthesis and chilling tolerance parameters between two well-known Zizania latifolia cultivars: Longjiao 2 and Zhejiao 911, which are chilling tolerant and sensitive, respectively. We found that severe cold stress induced photosynthesis inhibition (5°C) resulted from non-stomatal factors. However, net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) of the cultivar Longjiao 2 were higher than that of Zhejiao 911 with more gradual variations. Six parameters of chlorophyll fluorescence including latent activity of PSII (Fv/F0), efficiency of primary photochemistry (Fv/Fm), photochemical quenching coefficient (qP), non-photochemical quenching coefficient (qN), quantum yield of electric transport (Yield) and the ratio of electric transport at PSII (ETR) were analyzed in the two cultivars. We found that Longjiao 2 had significantly higher Fv/Fm and qN than Zhejiao 911 while qP values were only slightly different for the two lines at severe cold stress. In our experiments, Yield and ETR changed in a similar way in both Longjiao 2 and Zhejiao 911. In addition, the ability of heat dissipation of Longjiao 2 was statistically higher than that found in Zhejiao 911 when treated at 5°C for one day. These data suggest that cultivar Longjiao 2 induces chilling tolerance by modulating critical pathways including photosynthesis and energy dissipation.


2020 ◽  
Vol 12 (8) ◽  
pp. 1312
Author(s):  
Ekaterina Sukhova ◽  
Vladimir Sukhov

Measurement and analysis of the numerous reflectance indices of plants is an effective approach for the remote sensing of plant physiological processes in agriculture and ecological monitoring. A photochemical reflectance index (PRI) plays an important role in this kind of remote sensing because it can be related to early changes in photosynthetic processes under the action of stressors (excess light, changes in temperature, drought, etc.). In particular, we previously showed that light-induced changes in PRIs could be strongly related to the energy-dependent component of the non-photochemical quenching in photosystem II. The aim of the present work was to undertake comparative analysis of the efficiency of using light-induced changes in PRIs (ΔPRIs) based on different wavelengths for the estimation of the parameters of photosynthetic light reactions (including the parameters of photosystem I). Pea plants were used in the investigation; the photosynthetic parameters were measured using the pulse-amplitude-modulated (PAM) fluorometer Dual-PAM-100 and the intensities of the reflected light were measured using the spectrometer S100. The ΔPRIs were calculated as ΔPRI(band,570), where the band was 531 nm for the typical PRI and 515, 525, 535, 545, or 555 nm for modified PRIs; 570 nm was the reference wavelength for all PRIs. There were several important results: (1) ∆PRI(525,570), ∆PRI(531,570), ∆PRI(535,570), and ∆PRI(545,570) could be used for estimation of most of the photosynthetic parameters under light only or under dark only conditions. (2) The combination of dark and light conditions decreased the efficiency of ∆PRIs for the estimation of the photosynthetic parameters; ∆PRI(535,570) and ∆PRI(545,570) had maximal efficiency under these conditions. (3) ∆PRI(515,570) and ∆PRI(525,570) mainly included the slow-relaxing component of PRI; in contrast, ∆PRI(531,570), ∆PRI(535,570), ∆PRI(545,570), and ∆PRI(555,570) mainly included the fast-relaxing component of PRI. These components were probably caused by different mechanisms.


2019 ◽  
Vol 47 (3) ◽  
Author(s):  
Yaoguo QIN ◽  
Zesheng YAN ◽  
Honghui GU ◽  
Zhengxiang WANG ◽  
Xiong JIANG ◽  
...  

To study the effects of shading level on the photosynthesis and corm weight of konjac plant, the chlorophyll fluorescence parameters, daily variation of relative electron transport rate (rETR), net photosynthetic rate (Pn), and corm weight of konjac plants under different treatments were measured and comparatively analyzed through covered cultivation of biennial seed corms with shade nets at different shading rates (0%, 50%, 70%, and 90%). The results showed that with the increase in shading rate, the maximum photochemical efficiency, potential activity, and non-photochemical quenching of photosystem Ⅱ (PSⅡ) of konjac leaves constantly increased, whereas the actual photosynthetic efficiency, rETR, and photochemical quenching of PSⅡ initially increased and then decreased. This result indicated that moderate shading could enhance the photosynthetic efficiency of konjac leaves. The daily variation of rETR in konjac plants under unshaded treatment showed a bimodal curve, whereas that under shaded treatment displayed a unimodal curve. The rETR of plants with 50% treatment and 70% treatment was gradually higher than that under unshaded treatment around noon. The moderate shading could increase the Pn of konjac leaves. The stomatal conductance and transpiration rate of the leaves under shaded treatment were significantly higher than those of the leaves under unshaded treatment. Shading could promote the growth of plants and increase corm weight. The comprehensive comparison shows that the konjac plants had strong photosynthetic capacity and high yield when the shading rate was 50%-70% for the area.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 3, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


2014 ◽  
Vol 151 (4) ◽  
pp. 544-558 ◽  
Author(s):  
Amir Eppel ◽  
Ruth Shaked ◽  
Gil Eshel ◽  
Simon Barak ◽  
Shimon Rachmilevitch

Sign in / Sign up

Export Citation Format

Share Document