scholarly journals Characterization of the microbiota in long- and short-term natural indigo fermentation

2019 ◽  
Vol 46 (12) ◽  
pp. 1657-1667 ◽  
Author(s):  
Zhihao Tu ◽  
Helena de Fátima Silva Lopes ◽  
Kensuke Igarashi ◽  
Isao Yumoto
2015 ◽  
Vol 21 (3-4) ◽  
pp. 463-474 ◽  
Author(s):  
Rose L. Spear ◽  
Brajith Srigengan ◽  
Suresh Neelakantan ◽  
Wolfram Bosbach ◽  
Roger A. Brooks ◽  
...  

2004 ◽  
Vol 70 (2) ◽  
pp. 99-110 ◽  
Author(s):  
Kathleen M. Jensen ◽  
Michael D. Kahl ◽  
Elizabeth A. Makynen ◽  
Joseph J. Korte ◽  
Richard L. Leino ◽  
...  
Keyword(s):  

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Octavian Pastravanu ◽  
Mihaela-Hanako Matcovschi

The main purpose of this work is to show that the Perron-Frobenius eigenstructure of a positive linear system is involved not only in the characterization of long-term behavior (for which well-known results are available) but also in the characterization of short-term or transient behavior. We address the analysis of the short-term behavior by the help of the “(M,β)-stability” concept introduced in literature for general classes of dynamics. Our paper exploits this concept relative to Hölder vectorp-norms,1≤p≤∞, adequately weighted by scaling operators, focusing on positive linear systems. Given an asymptotically stable positive linear system, for each1≤p≤∞, we prove the existence of a scaling operator (built from the right and left Perron-Frobenius eigenvectors, with concrete expressions depending onp) that ensures the best possible values for the parametersMandβ, corresponding to an “ideal” short-term (transient) behavior. We provide results that cover both discrete- and continuous-time dynamics. Our analysis also captures the differences between the cases where the system dynamics is defined by matrices irreducible and reducible, respectively. The theoretical developments are applied to the practical study of the short-term behavior for two positive linear systems already discussed in literature by other authors.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6574
Author(s):  
Ana Belén Rodríguez González ◽  
Mark R. Wilby ◽  
Juan José Vinagre Díaz ◽  
Rubén Fernández Pozo

COVID-19 has dramatically struck each section of our society: health, economy, employment, and mobility. This work presents a data-driven characterization of the impact of COVID-19 pandemic on public and private mobility in a mid-size city in Spain (Fuenlabrada). Our analysis used real data collected from the public transport smart card system and a Bluetooth traffic monitoring network, from February to September 2020, thus covering relevant phases of the pandemic. Our results show that, at the peak of the pandemic, public and private mobility dramatically decreased to 95% and 86% of their pre-COVID-19 values, after which the latter experienced a faster recovery. In addition, our analysis of daily patterns evidenced a clear change in the behavior of users towards mobility during the different phases of the pandemic. Based on these findings, we developed short-term predictors of future public transport demand to provide operators and mobility managers with accurate information to optimize their service and avoid crowded areas. Our prediction model achieved a high performance for pre- and post-state-of-alarm phases. Consequently, this work contributes to enlarging the knowledge about the impact of pandemic on mobility, providing a deep analysis about how it affected each transport mode in a mid-size city.


Author(s):  
Roberto Llorente ◽  
Marta Beltran ◽  
Joaquin Perez ◽  
Noboru Uehara ◽  
Md. Khan ◽  
...  

Author(s):  
Somsirsa Chatterjee ◽  
Ankur Ganguly ◽  
Saugat Bhattacharya

Recent research on Heart Rate Variability (HRV) has proven that Poincare Plot is a powerful tool to mark Short Term and Long Term Heart Rate Variability. This study focuses a comprehensive characterization of HRV among the Tea Garden Workers of the Northern Hilly Regions of West Bengal. The characterization, as available from the data sets, projects the average values of SD1 characteristics, that is, Short Term HRV in females as 58.265ms and SD2 as 149.474. The SDRR shows a mean value of 87.298 with a standard deviation of 119.669 and the S Characterization as 16505.99 ms and Standard deviation of 45882.31 ms. The SDRR shows a mean value of 87.298 with a standard deviation of 119.669 and the S Characterization as 16505.99 ms and Standard deviation of 45882.31 ms. ApEn Characterization showed mean value of 0.961 and standard deviation of 0.274.


Author(s):  
Somsirsa Chatterjee ◽  
Ankur Ganguly ◽  
Saugat Bhattacharya

Recent research on Heart Rate Variability (HRV) has proven that Poincare Plot is a powerful tool to mark Short Term and Long Term Heart Rate Variability. This study focuses a comprehensive characterization of HRV among the Tea Garden Workers of the Northern Hilly Regions of West Bengal. The characterization, as available from the data sets, projects the average values of SD1 characteristics, that is, Short Term HRV in females as 58.265ms and SD2 as 149.474. The SDRR shows a mean value of 87.298 with a standard deviation of 119.669 and the S Characterization as 16505.99 ms and Standard deviation of 45882.31 ms. The SDRR shows a mean value of 87.298 with a standard deviation of 119.669 and the S Characterization as 16505.99 ms and Standard deviation of 45882.31 ms. ApEn Characterization showed mean value of 0.961 and standard deviation of 0.274.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3759
Author(s):  
Giulia Pascoletti ◽  
Maddalena Di Nardo ◽  
Gionata Fragomeni ◽  
Vincenza Barbato ◽  
Teresa Capriglione ◽  
...  

The ovary is a dynamic mechanoresponsive organ. In vitro, tissue biomechanics was reported to affect follicle activation mainly through the Hippo pathway. Only recently, ovary responsiveness to mechanical signals was exploited for reproductive purposes. Unfortunately, poor characterization of ovarian cortex biomechanics and of the mechanical challenge hampers reproducible and effective treatments, and prevention of tissue damages. In this study the biomechanical response of ovarian cortical tissue from abattoir bovines was characterized for the first time. Ovarian cortical tissue fragments were subjected to uniaxial dynamic testing at frequencies up to 30 Hz, and at increasing average stresses. Tissue structure prior to and after testing was characterized by histology, with established fixation and staining protocols, to assess follicle quality and stage. Tissue properties largely varied with the donor. Bovine ovarian cortical tissue consistently exhibited a nonlinear viscoelastic behavior, with dominant elastic characteristics, in the low range of other reproductive tissues, and significant creep. Strain rate was independent of the applied stress. Histological analysis prior to and after mechanical tests showed that the short-term dynamic mechanical test used for the study did not cause significant tissue tear, nor follicle expulsion or cell damage.


Sign in / Sign up

Export Citation Format

Share Document