scholarly journals Assessment of paddy fields’ damage caused by Cyclone Nargis using MODIS time-series images (2004–2013)

Author(s):  
Keisuke Omori ◽  
Toru Sakai ◽  
Jun Miyamoto ◽  
Akihiko Itou ◽  
Aung Naing Oo ◽  
...  

Abstract The Ayeyarwady Delta in the Bay of Bengal, the rice bowl of Myanmar, depends on natural conditions, especially rainfall. During the dry season, the delta’s coastal zone experiences saline water intrusion due to its low-lying topography. On May 2, 2008, Cyclone Nargis made landfall and crossed Ayeyarwady Region and Yangon City, affecting more than 50 townships and causing massive destruction of personal property and natural ecosystems. There is no doubt that Nargis caused an unprecedented large-scale disaster, but there is no objective method to quantify crop yield and salinity damage in the delta post-Nargis. The purpose of this study, therefore, is to clarify the changes in vegetation in paddy fields in the Ayeyarwady Delta using Moderate Resolution Imaging Spectroradiometer data pre- and post-Nargis and determine whether this method can be applied to measure crop and salinity damage. The study used daily composite data at a 250-m resolution (MOD09GQ, collection 6) from 2004 to 2013 and calculated NDVI and salinity indices smoothed by locally weighted regression (Lowess). Based on the results of our studies, NDVI peak value in 2008 was lower by 19% compared to 2007 data, and that the NDVI peak values declined for three straight years since May 2008 when Nargis struck. However, salinity damage evaluation pre- and post-Nargis (using the salinity index equation) showed that soil electrical conductivity did not tend to move up in the post-Nargis dry season (2009), indicating that the decrease in NDVI values was not due to salinity damage.

Author(s):  
Eiji Nunohiro ◽  
◽  
Kei Katayama ◽  
Kenneth J. Mackin ◽  
Jong Geol Park ◽  
...  

Tokyo University of Information Sciences receives MODIS (Moderate Resolution Imaging Spectroradiometer) data from NASA’s Terra and Aqua satellites, and provides the processed data to universities and research institutes as part of the academic frontier project. This paper considers the utilization of MODIS data for a system to search for fire regions in forests and fields. For the search system to be effective, the system must be able to extract the location, range and distribution of fires in forests and fields from a large scale image database quickly with high accuracy. In order to achieve high search response time and to improve the accuracy of the analysis, we propose a forest and field fire search system which implements a) a parallel distributed system configuration using multiple PC clusters, and b) MOD02, MOD03 and MOD09 process levels of MODIS data for input data which provide higher resolution and more accurate readings than the standard MOD14 process level data.


Author(s):  
B. Brede ◽  
J. Verbesselt ◽  
L. Dutrieux ◽  
M. Herold

The Amazon rainforests represent the largest connected forested area in the tropics and play an integral role in the global carbon cycle. In the last years the discussion about their phenology and response to drought has intensified. A recent study argued that seasonality in greenness expressed as Enhanced Vegetation Index (EVI) is an artifact of variations in sun-sensor geometry throughout the year. We aimed to reproduce these results with the Moderate-Resolution Imaging Spectroradiometer (MODIS) MCD43 product suite, which allows modeling the Bidirectional Reflectance Distribution Function (BRDF) and keeping sun-sensor geometry constant. The derived BRDF-adjusted EVI was spatially aggregated over large areas of central Amazon forests. The resulting time series of EVI spanning the 2000-2013 period contained distinct seasonal patterns with peak values at the onset of the dry season, but also followed the same pattern of sun geometry expressed as Solar Zenith Angle (SZA). Additionally, we assessed EVI’s sensitivity to precipitation anomalies. For that we compared BRDF-adjusted EVI dry season anomalies to two drought indices (Maximum Cumulative Water Deficit, Standardized Precipitation Index). This analysis covered the whole of Amazonia and data from the years 2000 to 2013. The results showed no meaningful connection between EVI anomalies and drought. This is in contrast to other studies that investigate the drought impact on EVI and forest photosynthetic capacity. The results from both sub-analyses question the predictive power of EVI for large scale assessments of forest ecosystem functioning in Amazonia. Based on the presented results, we recommend a careful evaluation of the EVI for applications in tropical forests, including rigorous validation supported by ground plots.


2016 ◽  
Vol 57 (71) ◽  
pp. 140-154 ◽  
Author(s):  
Marinka Spiess ◽  
Christoph Schneider ◽  
Fabien Maussion

Abstract.Using the Moderate Resolution Imaging Spectroradiometer (MODIS) Level 1 radiance Swath Data (MOD02QKM) with a spatial resolution of 250 m, we derive snowlines during July–September 2001–12 for several mountain ranges distributed across the Tibetan Plateau (TP). Radiance bands 1 and 2 are projected to the study area and processed automatically. The discrimination between snow and ice is done using a k-mean cluster analysis and the snowlines are delineated based on a fixed percentile of the snow-cover altitude. The highest transient snowline altitude is then taken as a proxy for the equilibrium-line altitude (ELA). In the absence of measured glaciological, meteorological or hydrological data, our ELA time series enable better understanding of atmosphere-cryosphere couplings on the TP. Interannual ELA variability is linked to local and remote climate indices using a correlation analysis. Southerly flow and higher temperatures are linked with a higher ELA in most regions. Eastern and Trans-Himalayan sites show positive correlations between winter temperatures and ELA. As winter temperatures are substantially below zero, this suggests an enhancement of winter sublimation as opposed to a reduction in accumulation. It appears that large-scale atmospheric forcing has varying and sometimes opposite influences on the annual ELA in different regions on the TP.


2020 ◽  
Author(s):  
Chuyong Lin ◽  
Jason Cohen

<p>A simple variance-maximization approach, based on 19 years of weekly Moderate Resolution Imaging spectroradiometer (MOPITT) CO vertical measurements, was employed to quantify the spatial distribution of the global seasonal biomass burning region. Results demonstrate there are a few large-scale and typical biomass burning regions responsible for most of the biomass burning emissions throughout the world, with the largest of these such regions located in Amazonian South America, Western Africa, Indonesia, and Northern Southeast Asia (Eastern India, Northern Myanmar, Laos, Vietnam and Eastern Bangladesh), which are highly associated with the results of Global Fire Emission Database(GFED). The CO is primarily lofted to and spreads downwind at 800mb or 700mb with three exceptions: The Maritime Continent and South America where there is significant spread at 300mb consistent with known deep- and pyro-convection; and Southern Africa where there is significant spread at 600mb. The total mass of CO lofted into the free troposphere ranges from 46% over Central Africa to 92% over Australia.</p>


2020 ◽  
Vol 12 (14) ◽  
pp. 2330
Author(s):  
Yan Tong ◽  
Lian Feng ◽  
Kun Sun ◽  
Jing Tang

Assessments of long-term changes of air quality and global radiative forcing at a large scale heavily rely on satellite aerosol optical depth (AOD) datasets, particularly their temporal binning products. Although some attempts focusing on the validation of long-term satellite AOD have been conducted, there is still a lack of comprehensive quantification and understanding of the representativeness of satellite AOD at different temporal binning scales. Here, we evaluated the performances of the Moderate Resolution Imaging Spectroradiometer (MODIS) AOD products at various temporal scales by comparing the MODIS AOD datasets from both the Terra and Aqua satellites with the entire global AErosol RObotic NETwork (AERONET) observation archive between 2000 and 2017. The uncertainty levels of the MODIS hourly and daily AOD products were similarly high, indicating that MODIS AOD retrievals could be used to represent daily aerosol conditions. The MODIS data showed the reduced quality when integrated from the daily to monthly scale, where the relative mean bias (RMB) changed from 1.09 to 1.21 for MODIS Terra and from 1.04 to 1.17 for MODIS Aqua, respectively. The limitation of valid data availability within a month appeared to be the primary reason for the increased uncertainties in the monthly binning products, and the monthly data associated uncertainties could be reduced when the number of valid AOD retrievals reached 15 times in one month. At all three temporal scales, the uncertainty levels of satellite AOD products decreased with increasing AOD values. The results of this study could provide crucial information for satellite AOD users to better understand the reliability of different temporal AOD binning products and associated uncertainties in their derived long-term trends.


2019 ◽  
Vol 11 (3) ◽  
pp. 314 ◽  
Author(s):  
Rita Condé ◽  
Jean-Michel Martinez ◽  
Marco Pessotto ◽  
Raúl Villar ◽  
Gérard Cochonneau ◽  
...  

In this study, we used moderate resolution imaging spectroradiometer (MODIS) satellite images to quantify the sedimentation processes in a cascade of six hydropower dams along a 700-km transect in the Paranapanema River in Brazil. Turbidity field measurement acquired over 10 years were used to calibrate a turbidity retrieval algorithm based on MODIS surface reflectance products. An independent field dataset was used to validate the remote sensing estimates showing fine accuracy (RMSE of 9.5 NTU, r = 0.75, N = 138). By processing 13 years of MODIS images since 2000, we showed that satellite data can provide robust turbidity monitoring over the entire transect and can identify extreme sediment discharge events occurring on daily to annual scales. We retrieved the decrease in the water turbidity as a function of distance within each reservoir that is related to sedimentation processes. The remote sensing-retrieved turbidity decrease within the reservoirs ranged from 2 to 62% making possible to infer the reservoir type and operation (storage versus run-of-river reservoirs). The reduction in turbidity assessed from space presented a good relationship with conventional sediment trapping efficiency calculations, demonstrating the potential use of this technology for monitoring the intensity of sedimentation processes within reservoirs and at large scale.


2019 ◽  
Vol 40 (19) ◽  
pp. 7663-7678 ◽  
Author(s):  
M. Nurul Fatin ◽  
Sheriza Mohd Razali ◽  
A. Ainuddin Ahmad ◽  
Zulhaidi M. S. Mohd Shafri

2010 ◽  
Vol 49 (3) ◽  
pp. 463-477 ◽  
Author(s):  
David Painemal ◽  
René Garreaud ◽  
José Rutllant ◽  
Paquita Zuidema

Abstract Stratocumulus cloud cover patterns and their relationship to drizzle were characterized at San Felix Island (SFI; 26.5°S, 80°W) in the southeast Pacific Ocean. Small closed, large closed, and open cells were identified in about 65% of the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images during 2003. The MODIS imagery was combined with ceilometer and surface meteorological measurements, human observations of cloud types and drizzle, and large-scale meteorological analyses for January through June. The authors identified two drizzle regimes: a synoptically quiescent summer (January–March) regime characterized by a strong anticyclone, large closed cells, and frequent drizzle, and an autumn (April–June) regime characterized by a weaker anticyclone, small closed cells and open cells, and precipitation that was mainly associated with synoptic activity. The large closed cells had higher mean cloud bases and tops than the small closed cells and accounted for 45% of the cumulus-under-stratocumulus reports and 29% of the total drizzle and rain reports. Large closed cells occupied more intermittently coupled boundary layers than did the small closed cells. Open cells also occurred in more decoupled conditions but only accounted for 18% of the total reports of drizzle and rain. The atmospheric stability of large and small closed cells was similar, but large closed cells were more commonly associated with a strong anticyclone, and small closed cells with wave activity superimposed upon a weakened anticyclone. The increased drizzle and occurrence of cumulus-under-stratocumulus in the summer rather than autumn is consistent with higher nighttime liquid water paths. A contribution of this study is the documentation of the ways in which synoptic activity can affect stratocumulus decks.


2021 ◽  
Vol 13 (6) ◽  
pp. 1151
Author(s):  
Tamás Várnai ◽  
Alexander Marshak

This paper examines cloud-related variations of atmospheric aerosols that occur in partly cloudy regions containing low-altitude clouds. The goal is to better understand aerosol behaviors and to help better represent the radiative effects of aerosols on climate. For this, the paper presents a statistical analysis of a multi-month global dataset that combines data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite instruments with data from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) global reanalysis. Among other findings, the results reveal that near-cloud enhancements in lidar backscatter (closely related to aerosol optical depth) are larger (1) over land than ocean by 35%, (2) near optically thicker clouds by substantial amounts, (3) for sea salt than for other aerosol types, with the difference from dust reaching 50%. Finally, the study found that mean lidar backscatter is higher near clouds not because of large-scale variations in meteorological conditions, but because of local processes associated with individual clouds. The results help improve our understanding of aerosol-cloud-radiation interactions and our ability to represent them in climate models and other atmospheric models.


2012 ◽  
Vol 27 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Gabriel Pereira ◽  
Francielle da Silva Cardozo ◽  
Fabrício Brito Silva ◽  
Elisabete Caria Moraes ◽  
Nelson Jesus Ferreira ◽  
...  

O presente trabalho avalia o emprego da energia radiativa do fogo (ERF) para estimar as emissões de material particulado com diâmetro menor que 2,5µm (PM2,5µm), a partir da obtenção do coeficiente multiplicativo, que relaciona o consumo de biomassa com a ERF liberada. Para isto, foram utilizados dados provenientes dos produtos do MODIS (Moderate Resolution Imaging Spectroradiometer) e do produto derivado do satélite GOES (Geostationary Operational Environmental Satellite), para calcular o total de aerossóis emitidos para a atmosfera. O CCATT-BRAMS (Coupled Chemistry-Aerosol-Tracer Transport model coupled to Brazilian Regional Atmospheric Modelling System) foi utilizado para estimar a concentração de PM2,5µm provenientes da queima de biomassa. Estes dados foram comparados com os dados de campo obtidos nos experimentos do LBA (Large Scale Biosphere-Atmosphere) SMOCC (Smoke, Aerosols, Clouds, rainfall, and Climate) e RaCCI (Radiation, Cloud, and Climate Interactions). A estimativa da emissão de PM2,5µm (µg.m-3) apresentou uma correlação com os dados do SMOCC/RaCCI superiores a 92%. Ainda, constatou-se que o consumo máximo diário pode exceder 5 Tg (milhões de toneladas), com uma média diária de 2,1 Tg. O método resultante das análises de laboratório permitiu estimar a biomassa consumida em 0,28 ± 0,01 Pg (10(15) g) para a América do Sul, entre Julho e Novembro de 2002.


Sign in / Sign up

Export Citation Format

Share Document