scholarly journals Single breath-hold saturation recovery 3D cardiac T1 mapping via compressed SENSE at 3T

2020 ◽  
Vol 33 (6) ◽  
pp. 865-876
Author(s):  
Tiago Ferreira da Silva ◽  
Carlos Galan-Arriola ◽  
Paula Montesinos ◽  
Gonzalo Javier López-Martín ◽  
Manuel Desco ◽  
...  

Abstract Objectives To propose and validate a novel imaging sequence that uses a single breath-hold whole-heart 3D T1 saturation recovery compressed SENSE rapid acquisition (SACORA) at 3T. Methods The proposed sequence combines flexible saturation time sampling, compressed SENSE, and sharing of saturation pulses between two readouts acquired at different RR intervals. The sequence was compared with a 3D saturation recovery single-shot acquisition (SASHA) implementation with phantom and in vivo experiments (pre and post contrast; 7 pigs) and was validated against the reference inversion recovery spin echo (IR-SE) sequence in phantom experiments. Results Phantom experiments showed that the T1 maps acquired by 3D SACORA and 3D SASHA agree well with IR-SE. In vivo experiments showed that the pre-contrast and post-contrast T1 maps acquired by 3D SACORA are comparable to the corresponding 3D SASHA maps, despite the shorter acquisition time (15s vs. 188s, for a heart rate of 60 bpm). Mean septal pre-contrast T1 was 1453 ± 44 ms with 3D SACORA and 1460 ± 60 ms with 3D SASHA. Mean septal post-contrast T1 was 824 ± 66 ms and 824 ± 60 ms. Conclusion 3D SACORA acquires 3D T1 maps in 15 heart beats (heart rate, 60 bpm) at 3T. In addition to its short acquisition time, the sequence achieves good T1 estimation precision and accuracy.

2021 ◽  
Author(s):  
Hailong He ◽  
Christine Schoenmann ◽  
Mathias Schwarz ◽  
Benedikt Hindelang ◽  
Andrei Bereznhoi ◽  
...  

The development and progression of melanoma tumors is associated with angiogenesis, manifesting as changes in vessel density, morphology, and architecture that may extend through the entire skin depth. Three-dimensional imaging of vascular characteristics in skin lesions could allow diagnostic insights not available to the conventional visual inspection. Raster-scan optoacoustic mesoscopy (RSOM) has emerged as a unique modality to image microvasculature through the entire skin depth with resolutions of tens of micrometers, offering new possibilities to assess angiogenetic processes. However, current RSOM implementations are slow, exacerbating motion artifacts and reducing image quality, particularly when imaging melanoma lesions that often appear on the upper torso where breathing motion is strongest. To visualize for the first time melanoma vasculature in humans, in high-resolution, we accelerated RSOM scanning using an illumination scheme that is co-axial with a high-sensitivity ultrasound detector path, yielding 15 second single-breath-hold scans that minimize motion artifacts. Applied to 10 melanomas and 10 benign nevi in humans, we demonstrate visualization of microvasculature with performance never before shown in vivo. We show marked differences between malignant and benign lesions, supporting the possibility to use vasculature as a biomarker for lesion characterization. The study points to promising clinical potential for Fast-RSOM (FRSOM) as a three dimensional visualization method that can enable the complete assessment of microvascular parameters of melanoma and improve diagnostics.


1993 ◽  
Vol 3 (4) ◽  
pp. 611-616 ◽  
Author(s):  
Thomas K. F. Foo ◽  
James R. Macfall ◽  
H. Dirk Sostman ◽  
Cecil E. Hayes

2017 ◽  
Vol 79 (2) ◽  
pp. 815-825 ◽  
Author(s):  
Xiufeng Li ◽  
Edward J. Auerbach ◽  
Pierre-Francois Van de Moortele ◽  
Kamil Ugurbil ◽  
Gregory J. Metzger

1975 ◽  
Vol 38 (5) ◽  
pp. 768-773 ◽  
Author(s):  
N. N. Stanley ◽  
M. D. Altose ◽  
S. G. Kelsen ◽  
C. F. Ward ◽  
N. S. Cherniack

Experiments were conducted on human subjects to study the effect of lung inflation during breath holding on respiratory drive. Two series of experiments were performed: the first to examine respiratory drive during a single breath hold, the second designed to examine the sustained effect of lung inflation on subsequent breath holds. The experiments involved breath holding begun either at the end of a normal expiration or after a maximum inspiration. When breath holding was repeated at 10-min intervals, the increase in BHT produced by lung inflation was greater in short breath holds (after CO2 rebreathing) than in long breath holds (after hyperventilation). If breath holds were made in rapid succession, the first breath hold was much longer when made at total lung capacity than at functional residual capacity, but this effect of lung inflation diminished in subsequent breath holds. It is concluded that the inhibitory effect of lung inflation decays during breath holding and is regained remarkably slowly during the period of breathing immediately after breath holding.


2018 ◽  
Vol 31 (6) ◽  
pp. e3923 ◽  
Author(s):  
Yong Chen ◽  
Wei-Ching Lo ◽  
Jesse I. Hamilton ◽  
Kestutis Barkauskas ◽  
Haris Saybasili ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document