Topology Optimization for Design of Hybrid Lattice Structures with Multiple Microstructure Configurations

Author(s):  
Nan Wei ◽  
Hongling Ye ◽  
Xing Zhang ◽  
Jicheng Li ◽  
Yunkang Sui
Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 678
Author(s):  
Zijun Wu ◽  
Renbin Xiao

This work presents a topology optimization method for symmetric hierarchical lattice structures with substructuring. In this method, we define two types of symmetric lattice substructures, each of which contains many finite elements. By controlling the materials distribution of these elements, the configuration of substructure can be changed. And then each substructure is condensed into a super-element. A surrogate model based on a series of super-elements can be built using the cubic B-spline interpolation. Here, the relative density of substructure is set as the design variable. The optimality criteria method is used for the updating of design variables on two scales. In the process of topology optimization, the symmetry of microstructure is determined by self-defined microstructure configuration, while the symmetry of macro structure is determined by boundary conditions. In this proposed method, because of the educing number of degree of freedoms on macrostructure, the proposed method has high efficiency in optimization. Numerical examples show that both the size and the number of substructures have essential influences on macro structure, indicating the effectiveness of the presented method.


Author(s):  
Boštjan Harl ◽  
Jožef Predan ◽  
Marko Kegl ◽  
Dejan Dinevski

This paper discusses modern simulation procedures used in design of structural load-carrying parts that are based on the Finite Element Method. The specific focus of the paper is the topology optimization usage within the context of two currently very interesting topics: configuration and optimization of lattice structures and modern additive manufacturing technologies. Both types of structures are presented together with their limits as well as their potentials for optimization. The discussion is illustrated by two numerical examples and experimentally obtained results. In the examples, a simple beam with three points load is optimized regarding to the different topology setups. The stress fields for different loaded optimized versions of structures are presented and the solutions are discussed and compared to the results of the experiment. A standalone topology optimization software CAESS ProTOp is used for the domain configuration and topology optimization in both examples.


Author(s):  
Bradley Hanks ◽  
Mary Frecker

Abstract Additive manufacturing is a developing technology that enhances design freedom at multiple length scales, from the macroscale, or bulk geometry, to the mesoscale, such as lattice structures, and even down to tailored microstructure. At the mesoscale, lattice structures are often used to replace solid sections of material and are typically patterned after generic topologies. The mechanical properties and performance of generic unit cell topologies are being explored by many researchers but there is a lack of development of custom lattice structures, optimized for their application, with considerations for design for additive manufacturing. This work proposes a ground structure topology optimization method for systematic unit cell optimization. Two case studies are presented to demonstrate the approach. Case Study 1 results in a range of unit cell designs that transition from maximum thermal conductivity to minimization of compliance. Case Study 2 shows the opportunity for constitutive matching of the bulk lattice properties to a target constitutive matrix. Future work will include validation of unit cell modeling, testing of optimized solutions, and further development of the approach through expansion to 3D and refinement of objective, penalty, and constraint functions.


2020 ◽  
Vol 10 (18) ◽  
pp. 6374
Author(s):  
Chen Pan ◽  
Yafeng Han ◽  
Jiping Lu

Cellular structures consist of foams, honeycombs, and lattices. Lattices have many outstanding properties over foams and honeycombs, such as lightweight, high strength, absorbing energy, and reducing vibration, which has been extensively studied and concerned. Because of excellent properties, lattice structures have been widely used in aviation, bio-engineering, automation, and other industrial fields. In particular, the application of additive manufacturing (AM) technology used for fabricating lattice structures has pushed the development of designing lattice structures to a new stage and made a breakthrough progress. By searching a large number of research literature, the primary work of this paper reviews the lattice structures. First, based on the introductions about lattices of literature, the definition and classification of lattice structures are concluded. Lattice structures are divided into two general categories in this paper: uniform and non-uniform. Second, the performance and application of lattice structures are introduced in detail. In addition, the fabricating methods of lattice structures, i.e., traditional processing and additive manufacturing, are evaluated. Third, for uniform lattice structures, the main concern during design is to develop highly functional unit cells, which in this paper is summarized as three different methods, i.e., geometric unit cell based, mathematical algorithm generated, and topology optimization. Forth, non-uniform lattice structures are reviewed from two aspects of gradient and topology optimization. These methods include Voronoi-tessellation, size gradient method (SGM), size matching and scaling (SMS), and homogenization, optimization, and construction (HOC). Finally, the future development of lattice structures is prospected from different aspects.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4786
Author(s):  
Xinglong Wang ◽  
Cheng Wang ◽  
Xin Zhou ◽  
Di Wang ◽  
Mingkang Zhang ◽  
...  

Heat-resistant, load-bearing components are common in aircraft, and they have high requirements for lightweight and mechanical performance. Lattice topology optimization can achieve high mechanical properties and obtain lightweight designs. Appropriate lattice selection is crucial when employing the lattice topology optimization method. The mechanical properties of a structure can be optimized by choosing lattice structures suitable for the specific stress environment being endured by the structural components. Metal lattice structures exhibit excellent unidirectional load-bearing performance and the triply periodic minimal surface (TPMS) porous structure can satisfy multi-scale free designs. Both lattice types can provide unique advantages; therefore, we designed three types of metal lattices (body-centered cubic (BCC), BCC with Z-struts (BCCZ), and honeycomb) and three types of TPMS lattices (gyroid, primitive, and I-Wrapped Package (I-WP)) combined with the solid shell. Each was designed with high level of relative density (40%, 50%, 60%, 70%, and 80%), which can be directly used in engineering practice. All test specimens were manufactured by selective laser melting (SLM) technology using Inconel 718 superalloy as the material and underwent static tensile testing. We found that the honeycomb test specimen exhibits the best strength, toughness, and stiffness properties among all structures evaluated, which is especially suitable for the lattice topology optimization design of heat-resistant, unidirectional load-bearing structures within aircraft. Furthermore, we also found an interesting phenomenon that the toughness of the primitive and honeycomb porous test specimens exhibited sudden increases from 70% to 80% and from 50% to 60% relative density, respectively, due to their structural characteristics. According to the range of the exponent value n and the deformation laws of porous structures, we also concluded that a porous structure would exhibit a stretching-dominated deformation behavior when exponent value n < 0.3, a bending-dominated deformation behavior when n > 0.55, and a stretching-bending-dominated deformation behavior when 0.3 < n < 0.55. This study can provide a design basis for selecting an appropriate lattice in lattice topology optimization design.


2021 ◽  
Author(s):  
Niclas Strömberg

Abstract The use of lattice structures in design for additive manufacturing has quickly emerged as a popular and efficient design alternative for creating innovative multifunctional lightweight solutions. In particular, the family of triply periodic minimal surfaces (TPMS) studied in detail by Schoen for generating frame-or shell-based lattice structures seems extra promising. In this paper a multi-scale topology optimization approach for optimal macro-layout and local grading of TPMS-based lattice structures is presented. The approach is formulated using two different density fields, one for identifying the macro-layout and another one for setting the local grading of the TPMS-based lattice. The macro density variable is governed by the standard SIMP formulation, but the local one defines the orthotropic elasticity of the element following material interpolation laws derived by numerical homogenization. Such laws are derived for frame- and shell-based Gyroid, G-prime and Schwarz-D lattices using transversely isotropic elasticity for the bulk material. A nice feature of the approach is that the lower and upper additive manufacturing limits on the local density of the TMPS-based lattices are included properly. The performance of the approach is excellent, and this is demonstrated by solving several three-dimensional benchmark problems, e.g., the optimal macro-layout and local grading of Schwarz-D lattice for the established GE-bracket is identified using the presented approach.


Sign in / Sign up

Export Citation Format

Share Document