scholarly journals The role of Notch ligand, Delta-like ligand 4 (DLL4), in cancer angiogenesis—implications for therapy

2021 ◽  
Author(s):  
Marlena Brzozowa-Zasada

Summary Background It is generally accepted that angiogenesis is a complex and tightly regulated process characterized by the growth of blood vessels from existing vasculature. Activation of the Notch signalling pathway affects multiple aspects of vascular development. One of the components of the Notch signalling pathway, Delta-like ligand 4 (DLL4), has recently appeared as a critical regulator of tumour angiogenesis and thus as a promising therapeutic target. Methods This review article includes available data from peer-reviewed publications associated with the role of DLL4 in cancer angiogenesis. Searches were performed in PubMed, EMBASE, Google Scholar and Web of Science using the terms “tumour angiogenesis”, “DLL4”, “Notch signalling” and “anti-cancer therapy”. Results The survival curves of cancer patients revealed that the patients with high DLL4 expression levels had significantly shorter survival times than the patients with low DLL4 expression. Moreover, a positive correlation was also identified between DLL4 and VEGF receptorsʼ expression levels. It seems that inhibition of DLL4 may exert potent growth inhibitory effects on some tumours resistant to anti-VEGF therapies. A great number of blocking agents of DLL4/Notch signalling including anti-DLL4 antibodies, DNA vaccination, Notch antibodies and gamma-secretase inhibitors have been studied in preclinical tumour models. Conclusion DLL4 seems to be a promising target in anti-cancer therapy. Nevertheless, the careful evaluation of adverse effects on normal physiological processes in relation to therapeutic doses of anti-DLL4 drugs will be significant for advancement of DLL4 blocking agents in clinical oncology.

2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110283
Author(s):  
Liming Li ◽  
Xiaqing Liu ◽  
Mingguang Zhao ◽  
Peng Guo ◽  
Haifeng Zhang

Brain arteriovenous malformation (BAVM) is an abnormality in the cerebral vascular system. Although the upregulation of the Notch signalling pathway is a deterministic factor in BAVM, the mechanism by which this pathway is upregulated in patients with BAVM is uncertain. The effects of serum starvation and vascular endothelial growth factor (VEGF) stimulation on the Notch signalling pathway in brain microvascular endothelial cells (MECs) and mouse embryonic stem (mES)/embryoid body (EB)-derived endothelial cells were investigated in this study. The duration of serum starvation and VEGF concentration were changed, cell viability was measured, and reasonable time and concentration gradients were selected for subsequent studies. Protein and mRNA expression levels of Notch signalling pathway components in both MECs and mES/EB-derived endothelial cells were detected using western blotting and real-time PCR, respectively. Expression levels of the Notch1, Notch4, Jagged1, delta-like ligand 4 (Dll4) and Hes1 proteins and mRNAs were upregulated by lower VEGF concentrations and shorter-term serum starvation but inhibited by higher VEGF concentrations and longer-term serum starvation. This study revealed effects of changes in the duration of serum starvation and VEGF concentration on the expression of Notch signalling pathway components in both MECs and mES/EB-derived endothelial cells, potentially contributing to BAVM formation.


Development ◽  
2001 ◽  
Vol 128 (8) ◽  
pp. 1391-1402 ◽  
Author(s):  
K.i. Koizumi ◽  
M. Nakajima ◽  
S. Yuasa ◽  
Y. Saga ◽  
T. Sakai ◽  
...  

The Notch signalling pathway plays essential roles during the specification of the rostral and caudal somite halves and subsequent segmentation of the paraxial mesoderm. We have re-investigated the role of presenilin 1 (Ps1; encoded by Psen1) during segmentation using newly generated alleles of the Psen1 mutation. In Psen1-deficient mice, proteolytic activation of Notch1 was significantly affected and the expression of several genes involved in the Notch signalling pathway was altered, including Δ-like3, Hes5, lunatic fringe (Lfng) and Mesp2. Thus, Ps1-dependent activation of the Notch pathway is essential for caudal half somite development. We observed defects in Notch signalling in both the caudal and rostral region of the presomitic mesoderm. In the caudal presomitic mesoderm, Ps1 was involved in maintaining the amplitude of cyclic activation of the Notch pathway, as represented by significant reduction of Lfng expression in Psen1-deficient mice. In the rostral presomitic mesoderm, rapid downregulation of the Mesp2 expression in the presumptive caudal half somite depends on Ps1 and is a prerequisite for caudal somite half specification. Chimaera analysis between Psen1-deficient and wild-type cells revealed that condensation of the wild-type cells in the caudal half somite was concordant with the formation of segment boundaries, while mutant and wild-type cells intermingled in the presomitic mesoderm. This implies that periodic activation of the Notch pathway in the presomitic mesoderm is still latent to segregate the presumptive rostral and caudal somite. A transient episode of Mesp2 expression might be needed for Notch activation by Ps1 to confer rostral or caudal properties. In summary, we propose that Ps1 is involved in the functional manifestation of the segmentation clock in the presomitic mesoderm.


2005 ◽  
Vol 50 (2) ◽  
pp. 137-140 ◽  
Author(s):  
Thimios A. Mitsiadis ◽  
Laure Regaudiat ◽  
Thomas Gridley

2019 ◽  
Vol 67 (4) ◽  
pp. 632-642
Author(s):  
Hadri Hadi Yusof ◽  
Han-Chung Lee ◽  
Eryse Amira Seth ◽  
Xiangzhong Wu ◽  
Chelsee A. Hewitt ◽  
...  

2021 ◽  
pp. 107815522199431
Author(s):  
Jennifer P Booth ◽  
Julie M Kennerly-Shah ◽  
Amber D Hartman

Introduction To describe pharmacist interventions as a result of an independent double check during cognitive order verification of outpatient parenteral anti-cancer therapy. Methods A single-center, retrospective analysis of all individual orders for outpatient, parenteral anti-cancer agents within a hematology/oncology infusion center during a 30 day period was conducted. The primary endpoint was error identification rates during first and second verification. Secondary endpoints included the type, frequency, and severity of errors identified during second verification using a modified National Coordinating Council for Medication Error Reporting and Prevention Index. Results A total of 1970 anti-cancer parenteral orders were screened, from which 1645 received an independent double check and were included. The number of errors identified during first and second verification were 30 (1.8%) and 10 (0.6%) respectively; second verification resulted in a 33.3% increase in corrected errors. The 10 errors identified during second verification included: four rate transcriptions to optimize pump interoperability, three rate and/or volume modifications, two dosage adjustments, and one treatment deferral due to toxicity. The severity was classified as Category A for four (40%), Category C for three (30%), and Category D for three (30%) errors. This correlated to a low capacity for harm for seven (70%) and a serious capacity for three (30%) errors. Conclusions Second verification of outpatient, parenteral anti-cancer medication orders resulted in a 33.3% increase in corrected errors. Three errors detected during second verification were determined to have a serious capacity for harm, supporting the value of independent double checks during pharmacist cognitive order verification.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1138
Author(s):  
Zhe Zhang ◽  
Jiayan Shi ◽  
Edouard C. Nice ◽  
Canhua Huang ◽  
Zheng Shi

Flavonoids are considered as pleiotropic, safe, and readily obtainable molecules. A large number of recent studies have proposed that flavonoids have potential in the treatment of tumors by the modulation of autophagy. In many cases, flavonoids suppress cancer by stimulating excessive autophagy or impairing autophagy flux especially in apoptosis-resistant cancer cells. However, the anti-cancer activity of flavonoids may be attenuated due to the simultaneous induction of protective autophagy. Notably, flavonoids-triggered protective autophagy is becoming a trend for preventing cancer in the clinical setting or for protecting patients from conventional therapeutic side effects in normal tissues. In this review, focusing on the underlying autophagic mechanisms of flavonoids, we hope to provide a new perspective for clinical application of flavonoids in cancer therapy. In addition, we highlight new research ideas for the development of new dosage forms of flavonoids to improve their various pharmacological effects, establishing flavonoids as ideal candidates for cancer prevention and therapy in the clinic.


2007 ◽  
Vol 306 (1) ◽  
pp. 301
Author(s):  
Hugo J. Bellen ◽  
Melih Acar ◽  
Hamed Jafar Nejad ◽  
Anchi Tien ◽  
Akhila Rajan

Sign in / Sign up

Export Citation Format

Share Document