Effect of active mixing on capture efficiency in heterogeneous microfluidic immunosensor

2020 ◽  
Vol 24 (8) ◽  
Author(s):  
Shipra Verma ◽  
Siddhartha Panda
2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110178
Author(s):  
Zhengang Liu ◽  
Weinan Diao ◽  
Zhenxia Liu ◽  
Fei Zhang

Particle deposition could decrease the aerodynamic performance and cooling efficiency of turbine vanes and blades. The particle motion in the flow and its temperature are two important factors affecting its deposition. The size of the particle influences both its motion and temperature. In this study, the motion of particles with the sizes from 1 to 20 μm in the first stage of a turbine are firstly numerically simulated with the steady method, then the particle deposition on the vanes and blades are numerically simulated with the unsteady method based on the critical viscosity model. It is discovered that the particle deposition on vanes mainly formed near the leading and trailing edge on the pressure surface, and the deposition area expands slowly to the whole pressure surface with the particle size increasing. For the particle deposition on blades, the deposition area moves from the entire pressure surface toward the tip with the particle size increasing due to the effect of rotation. For vanes, the particle capture efficiency increases with the particle size increasing since Stokes number and temperature of the particle both increase with its size. For blades, the particle capture efficiency increases firstly and then decreases with the particle size increasing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Subin Kim ◽  
Jinhyo Chung ◽  
Sang Hyun Lee ◽  
Jeong Hyeon Yoon ◽  
Dae-Hyuk Kweon ◽  
...  

AbstractInfluenza, one of the most contagious and infectious diseases, is predominantly transmitted through aerosols, leading to the development of filter-based protective equipment. Though the currently available filters are effective at removing submicron-sized particulates, filter materials with enhanced virus-capture efficiency are still in demand. Coating or chemically modifying filters with molecules capable of binding influenza viruses has received attention as a promising approach for the production of virus-capturing filters. For this purpose, tannic acid (TA), a plant-derived polyphenol, is a promising molecule for filter functionalization because of its antiviral activities and ability to serve as a cost-efficient adhesive for various materials. This study demonstrates the facile preparation of TA-functionalized high-efficiency particulate air (HEPA) filter materials and their efficiency in influenza virus capture. Polypropylene HEPA filter fabrics were coated with TA via a dipping/washing process. The TA-functionalized HEPA filter (TA-HF) exhibits a high in-solution virus capture efficiency of up to 2,723 pfu/mm2 within 10 min, which is almost two orders of magnitude higher than that of non-functionalized filters. This result suggests that the TA-HF is a potent anti-influenza filter that can be used in protective equipment to prevent the spread of pathogenic viruses.


JACS Au ◽  
2021 ◽  
Author(s):  
Young Hun Lee ◽  
YongSung Kwon ◽  
Chaehoon Kim ◽  
Young-Eun Hwang ◽  
Minkee Choi ◽  
...  

Author(s):  
Dosung Kim ◽  
Young-Bok Cho ◽  
Jung Lark Kim ◽  
Eui jeong Hong ◽  
Chulgoo Kim ◽  
...  

2007 ◽  
Vol 38 (3) ◽  
pp. 243-256 ◽  
Author(s):  
William H. Hendershot

ABSTRACT Thirteen soil profiles from northern Québec and Labrador, Canada, near the northern tree-line, were sampled and analysed. Five of these, located on poorly to imperfectly drained sites, are strongly cryoturbated soils with permafrost at a shallow depth. Below the surface horizon they have very uniform profile distributions of pH, carbon and extractable iron and aluminum due to the active mixing of the horizons. The eight soils from well-drained sites have profiles similar to those of soils in similar settings in more temperate climatic regions. One of these, developed in one of the most northerly valleys having a black spruce-larch forest vegetation, has the characteristics of a podzol (spodosol) except that the podzolic B (spodic) horizon is too thin. The other seven profiles all have color B horizons, although the coarse texture prevents their classification as cambic horizons; these soils all have carbon-rich A horizons varying in thickness from 1.5 to 20 cm. Soil temperature at 50 cm depth closely follows the elevational and latitudinal distribution of the soils; a range of 0 to 10° C was observed. Soil development, measured as depth of solum, organic carbon accumulation or degree of B horizon development, is closely related to soil temperature and site position. The presence of permanently frozen ice layers at shallow depth has a marked influence on soil genesis and the properties of the resultant soils.


Sign in / Sign up

Export Citation Format

Share Document