A size reduction method for rapid digital PCR using thin-film chip and vacuum pouch microfluidic system

2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Cheng-Je Lee ◽  
Yu-Hsiang Hsu
Author(s):  
Takashi OHYA ◽  
Fumito YAMANAKA ◽  
Tetsutaro KIKUCHI ◽  
Daisuke SASAKI ◽  
Tatsuya SHIMIZU ◽  
...  

2013 ◽  
Vol 832 ◽  
pp. 310-315
Author(s):  
R. Ahmad ◽  
M.S. Shamsudin ◽  
M. Salina ◽  
S.M. Sanip ◽  
M. Rusop ◽  
...  

MgZnO thin films are proposed as a new dielectric material for 1 GHz monolithic microwave integrated circuit (MMIC) applications. The high permittivity of this material enables size reduction; furthermore this can be fabricated using a low cost processing method. In this work, MgZnO/Pt/Si thin films were synthesized using a sol-gel spin coating method. The samples were annealed at various temperatures with the effects on physical and electrical properties investigated at direct current (DC) and high frequencies. The physical properties of MgZnO thin film were analyzed using X-Ray diffraction, with the improvements shown in crystalline structure and grain size with increasing temperature up to 700 °C. DC resistivity of 77 Ωcm at higher annealing temperature obtained using a four point probe station. In order to prove the feasibility at high frequencies, a test structure consisting of a 50 Ω transmission line and capacitors with 50 × 50 μm electrode area were patterned on the films using electron beam lithography. The radio frequency (RF) properties were measured using aWiltron 37269Avector network analyzer andCascade Microtechon-wafer probes measured over a frequency range of 0.5 to 3 GHz. The dielectric constant, loss tangent and return loss, S11improve with the increment annealing temperature. The dielectric constant was found to be 18.8, with loss tangent of 0.02 at 1 GHz. These give a corresponding size reduction of ten times compared to conventional dielectrics, silicon nitride (Si3N4). These indicate that the material is suitable to be implemented as a new dielectric material for 1GHz MMIC applications.


2013 ◽  
Vol 832 ◽  
pp. 415-418 ◽  
Author(s):  
Mohammad Nuzaihan Md Nor ◽  
Uda Hashim ◽  
Taib Nazwa ◽  
Tijjani Adam

A simple method for the fabrication of silicon nanowires using Electron Beam Lithography (EBL) combined with thermal oxidation size reduction method is presented. EBL is used to define the initial silicon nanowires of dimensions approximately 100 nm. Size-reduction method is employed for reaching true nanoscale of dimensions approximately 20 nm. Dry oxidation of silicon is well investigated process for self-limited size-reduction of silicon nanowires. In this paper, successful size reduction of silicon nanowires is presented and surface topography characterizations using Atomic Force Microscopy (AFM) are reported.


2021 ◽  
Author(s):  
Byeong-Ui Moon ◽  
Navid Hakimi ◽  
Dae Kun Hwang ◽  
Scott S. H. Tsai

We present the conformal coating of non-spherical magnetic particles in a co-laminar flow microfluidic system. Whereas in the previous reports spherical particles had been coated with thin films that formed spheres around the particles; in this article, we show the coating of non-spherical particles with coating layers that are approximately uniform in thickness. The novelty of our work is that while liquid-liquid interfacial tension tends to minimize the surface area of interfaces—for example, to form spherical droplets that encapsulate spherical particles—in our experiments, the thin film that coats non-spherical particles has a non-minimal interfacial area. We first make bullet-shaped magnetic microparticles using a stop-flow lithography method that was previously demonstrated. We then suspend the bullet-shaped microparticles in an aqueous solution and flow the particle suspension with a co-flow of a non-aqueous mixture. A magnetic field gradient from a permanent magnet pulls the microparticles in the transverse direction to the fluid flow, until the particles reach the interface between the immiscible fluids. We observe that upon crossing the oil-water interface, the microparticles become coated by a thin film of the aqueous fluid. When we increase the two-fluid interfacial tension by reducing surfactant concentration, we observe that the particles become trapped at the interface, and we use this observation to extract an approximate magnetic susceptibility of the manufactured non-spherical microparticles. Finally, using fluorescence imaging, we confirm the uniformity of the thin film coating along the entire curved surface of the bullet-shaped particles. To the best of our knowledge, this is the first demonstration of conformal coating of non-spherical particles using microfluidics.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 2834-2843 ◽  
Author(s):  
Cheng-Je Lee ◽  
Yu-Hsiang Hsu

Vacuum pouch microfluidic system: a new type of lab-on-a-chip device that uses an on-chip vacuum pouch to drive a thin-film micromixer with a wide operation range.


Sign in / Sign up

Export Citation Format

Share Document