scholarly journals The impact of weather conditions on hazel pollen concentration in Sosnowiec (Poland) in 1997–2019

Aerobiologia ◽  
2020 ◽  
Vol 36 (4) ◽  
pp. 697-713
Author(s):  
Katarzyna Dąbrowska-Zapart ◽  
Tadeusz Niedźwiedź

AbstractThe goal of this study was to compare hazel pollen seasons in Sosnowiec in 1997–2019 and to analyse the impact of weather conditions on these seasons. The measurements were conducted using a volumetric method with a Burkard spore trap. The duration of pollen seasons was determined using the 98% method. SPI (Seasonal Pollen Index) was calculated as the sum of daily pollen concentrations in a given season. The measurements showed that high temperatures in January and February had an impact on the beginning of the hazel pollen season. They revealed that there are positive correlations with temperatures and sunshine hours long before the season, i.e. 210–180 days before. The daily hazel pollen concentration in Sosnowiec showed a positive and statistically significant correlation with air temperature, sunshine hours, and average and maximum wind speed. Negative correlation was demonstrated for snow cover depth and relative humidity of the air. Daily concentration levels depend also on the type of weather front as well as direction of air mass flow and its type. Variance analysis showed that the highest concentrations of hazel pollen grains were recorded when warm air moves from the south and south–western direction, whereas the lowest ones were noted for air moving from the east, south–east, north and north–east directions. Atmospheric precipitation, snow cover depth, and average, maximum, minimum and near-the-ground temperatures in the season also had an impact on the SPI of hazel pollen grains. High positive correlation coefficients were also observed in the case of thermal conditions, sunshine hours, relative humidity and precipitation from July to September in the year preceding a given pollen season. The duration of the hazel pollen season depends on precipitation, snow cover depth and temperature during a given season.

2012 ◽  
Vol 61 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Agnieszka Dąbrowska

The start and rate of florescence of <i>Alnus</i>, <i>Corylus</i> and <i>Betula</i> are dependent on meteorological conditions. In the present paper we have analysed the effect of mean, maximum and minimum temperature, relative air humidity and precipitation on the onset of the pollen season as well as on its length and annual count of pollen grains in alder, hazel and birch. The measurement of pollen fall was done by the gravimetric methods with the use of Durham sampler. Correlation coefficients were calculated between the determined characteristics of the pollen season and weather conditions. In the six-year research period 2001-2006 it was observed that low temperatures in January produced a delayed start of the pollen season in alder, hazel and birch. The beginning of flowering in these taxa was also influenced by thermal conditions prevailing directly before the season (ca. 10 days). The pollen season of the trees in question tended to be prolonged alongside with the increase in relative air humidity, but it was shortened due to higher temperatures. The volume of alder and hazel pollen release increased together with the rise in relative air humidity and precipitation. The annual counts of birch pollen increased along with rising temperature and decreasing relative air humidity and precipitation in the season.


Aerobiologia ◽  
2021 ◽  
Author(s):  
Katarzyna Dąbrowska-Zapart ◽  
Tadeusz Niedźwiedź

AbstractThe study's main objective was to specify the extent to which weather conditions were related to the course of birch pollen seasons in the years 1997–2020. The impact of atmospheric conditions on the daily concentrations of birch pollen grains, the Annual pollen integral (APIn), and the length of pollen seasons were studied. The dependency between each meteorological condition and various features of the birch pollen season was determined using Spearman’s rho correlation, the Kruskal–Wallis test, and cluster analysis with the k-means method. It has been shown that the duration of sunshine and average air temperature occurring within 14 days preceding the season has the most significant influence on the beginning of a birch pollen season. The value of daily birch pollen concentrations in Sosnowiec showed a statistically significant positive correlation with the duration of sunlight and the average and maximum wind speed. The daily concentration also depended on the synoptic situation: the mass airflow direction, the type of air mass inflow, and the type of weather front. The near-ground temperature influenced the APIn of birch pollen grains during the period of 14 days before the beginning of the season and the meteorological conditions occurring in the summer of the preceding year such as the maximum temperature, duration of sunlight, the maximum and average wind speed, and the relative air humidity. It was concluded that the length of birch pollen seasons decreased year by year.


2012 ◽  
Vol 59 (2) ◽  
pp. 121-130
Author(s):  
Elżbieta Weryszko-Chmielewska ◽  
Bogusław M. Kaszewski ◽  
Krystyna Piotrowska

The course of the <i>Artemisia</i> pollen season was recorded in Lublin over a period of five years: 2001-2005. The volumetric method was applied in the studies, using a VPPS 2000 Lanzoni trap. The length of the season was determined by the 98% method. The impact of several meteorological factors on the start and course of the pollen season was analysed. It was found that in the five-year period studied the mugwort pollen season started in the second or third decade of July and lasted 59-90 days. Maximum concentrations in the range of 103-221 pollen grains in 1 m<sup>3</sup> of air were noted between 2 and 9 August. Annual totals of mugwort pollen grains ranged from 1496 to 2532. A significant positive correlation was demonstrated between the <i>Artemisia</i> pollen concentration and air temperature, and a negative correlation between the pollen concentration and air relative humidity and cloudiness. A significant impact of temperature on the start of the <i>Artemisia</i> pollen season was also found.


Alergoprofil ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. 54-59
Author(s):  
Krystyna Piotrowska-Weryszko ◽  
Elżbieta Weryszko-Chmielewska ◽  
Katarzyna Dąbrowska-Zapart ◽  
Monika Ziemianin ◽  
Małgorzata Puc ◽  
...  

Corylus produces allergenic pollen grains that appear in the air in early spring and cause pollen allergy in sensitive people. The aim of this study was to compare the Corylus pollen seasons in 2021 in the following 11 cities in Poland: Bialystok, Bydgoszcz, Cracow, Sosnowiec, Lublin, Olsztyn, Piotrkow Trybunalski, Szczecin, Warsaw, Wroclaw, and Zielona Gora. This research was conducted using the volumetric method and Burkard or Lanzoni pollen samplers. Pollen season duration was determined by the 95% method. The hazel pollen season in 2021 began relatively late, between February 20 and March 1. The season start was recorded earliest in Zielona Gora, while latest in Olsztyn. The highest values of maximum Corylus pollen concentration were recorded in Sosnowiec (230 P/m3) and Zielona Gora (213 P/m3), whereas the lowest ones in Bialystok (27 P/m3) and Bydgoszcz (54 P/m3). In most of these cities, the maximum daily concentration of Corylus pollen grains was recorded in the third 10 days of February or at the beginning of March and only in Lublin and Bialystok the peak value occurred later, on March 16 and March 26, respectively. The highest risk of allergy in people sensitive to the pollen of this taxon was found in Lublin, Olsztyn, and Zielona Gora. The highest values of the annual pollen integral were determined in Lublin, similarly to the previous years.


Alergoprofil ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 34-39
Author(s):  
Krystyna Piotrowska-Weryszko ◽  
Agata Konarska ◽  
Małgorzata Puc ◽  
Elżbieta Weryszko-Chmielewska ◽  
Małgorzata Malkiewicz ◽  
...  

In Poland hazel is one of the earliest flowering plants and in phenology it belongs to indicator plants that mark the beginning of early spring. Hazel pollen grains contain allergens that are a cause of pollen allergy during the early spring period. The aim of the present study was to compare Corylus pollen seasons in 2020 in the following 11 cities located in different regions of Poland: Szczecin, Bydgoszcz, Zielona Gora, Wroclaw, Opole, Sosnowiec, Piotrkow Trybunalski, Warsaw, Lublin, Olsztyn, and Bialystok. This research was conducted using the volumetric method and Burkard or Lanzoni pollen samplers. Pollen season duration was determined by the 95% method. This study analyzed the specific parameters of the pollen season (start, end, peak value, peak date, annual total) and also determined the number of days with a concentration exceeding the threshold values at which the first allergy symptoms in people sensitized to hazel pollen and symptoms in all allergic patients occur, respectively. The hazel pollen season in 2020 began relatively early, between January 11th and February 2nd. The season start was recorded earliest in Opole and latest in Olsztyn and Bialystok. The study found that the pollen season started earlier in the western part of Poland than in the eastern regions. The highest maximum Corylus pollen concentration was recorded in Lublin (388 P/m3), whereas the lowest one in Bydgoszcz (48 P/m3). The maximum daily concentration of Corylus pollen grains was recorded in different periods in the individual cities, while the peak concentration values occurred between January 31th and March 4th. The highest risk of allergy in people sensitive to the pollen of this taxon was found in Lublin since the most days with a pollen concentration exceeding the threshold value were observed in this city. Lublin was found to have the highest annual total values and they were 1.6–5.6 times higher than in the other cities. The highest annual pollen sums and peak values as well as the highest number of days with a concentration exceeding the threshold value had also been recorded in Lublin previously.


2012 ◽  
Vol 60 (2) ◽  
pp. 71-77 ◽  
Author(s):  
Dorota Myszkowska ◽  
Bartosz Jenner ◽  
Katarzyna Cywa ◽  
Monika Kuropatwa ◽  
Danuta Stępalska ◽  
...  

The aim of the study was to compare the dynamics of pollen seasons of selected tree and shrub taxa among measurement sites in Kraków and its neighbourhood. The study was performed in Kraków and Piotrkowice Małe in 2002, as well as in Kraków and Giebułtów in 2006. During the study the volumetric method was applied and pollen grains were counted along four horizontal lines. The lowest percentage of <i>Corylus</i> pollen and the highest percentage of <i>Betula</i> pollen were found in the analysed sites. The differences among start dates in various measurement sites in a given year were inconsiderable. Statistically signifi cant differences of SPI values for the majority of taxa were found between measurement sites and between seasons for Kraków. The pollen season dynamics showed one (<i>Betula</i>, <i>Pinaceae</i>) or more maximum values (<i>Corylus</i>, <i>Populus</i>, <i>Fraxinus</i>, <i>Salix</i>). The occurrence of many peaks could be explained by the appearance of several species within one genus in the studied area or by various weather conditions. In 2002 maximum pollen concentrations were recorded earlier than in 2006. The differences in these dates could be explained better by cumulative temperature >5℃ than >0℃.


2012 ◽  
Vol 61 (2) ◽  
pp. 49-56 ◽  
Author(s):  
Katarzyna Dąbrowska-Zapart

An analysis of hazel pollen seasons in Sosnowiec was presented on the basis of data from the years 1997-2007. The research was conducted by means of the volumetric method using a Burkard-type spore trap. The duration of pollen seasons was determined by means of the 98% method. The research demonstrated statistically significant correlations between the average, maximum and minimum temperature, relative humidity as well as the number of days with sub-zero temperature and the beginning of the hazel pollen season. It was demonstrated that the duration of the pollen season depended on air relative humidity, insolation and precipitation during the season and the annual sum depended on the weather conditions of the year preceding pollen production and also the weather conditions two years earlier. Significant correlations were also found between weather conditions and the daily concentration of pollen grains. The daily concentration decreased when relative humidity was high and increased with high insolation and air temperature.


2012 ◽  
Vol 59 (2) ◽  
pp. 131-141
Author(s):  
Elżbieta Weryszko-Chmielewska ◽  
W. Zwolan ◽  
T. Wolski ◽  
T. Baj

<i>Xanthium strumarium</i> (common cocklebur) pollen grains are included in allergenic types. During a three-year study (2003-2005) conducted by using the gravimetric method at two trap sites in Lublin, daily concentrations, maximum concentrations and annual sums of pollen grains, as well as the length of pollen seasons of this species were compared. The pollen season of common cocklebur starts in the first or second decade of July and lasts until the third decade of September. The length of the pollen season is 70-80 days. The highest cocklebur pollen concentrations, amounting to 40-59 z·cm<sup>-2</sup>, occurred between 8 and 18 August. The maximum cocklebur pollen concentrations differed slightly in particular trap sites over the period of three years of study. A statistically significant correlation between the <i>Xanthium strumarium</i> pollen concentration and average temperature was demonstrated only in one year of study (2004).


2016 ◽  
Vol 69 (2) ◽  
Author(s):  
Nataliya Kalinovych ◽  
Kateryna Voloshchuk ◽  
Nataliya Vorobets

<em>Corylus</em> and <em>Alnus</em> trees are common throughout Western Ukraine. They are important producers of allergenic airborne pollen in the environment of Lviv city. The objective of this study was to examine the dynamics of the <em>Corylus</em> and <em>Alnus</em> air pollen concentration in Lviv with reference to changes in weather conditions. Pollen data (2011–2015) were obtained by the gravimetric method for a site located at the center of Lviv city. The total annual <em>Corylus</em> pollen sums varied from 281 to 724, while the <em>Alnus</em> sums were several times more abundant and varied from 656 to 2505. There were 43 days of difference in start dates of the <em>Corylus</em> pollen season. The start dates for the <em>Alnus</em> pollen season showed a 30-day difference over the 5 years. The season duration differed by 17 days for <em>Corylus</em> and 31 days for <em>Alnus</em>. There is some evidence of synchronous patterns for <em>Corylus</em> and <em>Alnus</em> pollen seasons in Lviv. A trend was observed towards earlier starts of seasons that corresponded to a gradual increase in the average February temperature over 2011–2015.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 68
Author(s):  
Arkadiusz M. Tomczyk ◽  
Ewa Bednorz ◽  
Katarzyna Szyga-Pluta

The primary objective of the paper was to characterize the climatic conditions in the winter season in Poland in the years 1966/67–2019/20. The study was based on daily values of minimum (Tmin) and maximum air temperature (Tmax), and daily values of snow cover depth. The study showed an increase in both Tmin and Tmax in winter. The most intensive changes were recorded in north-eastern and northern regions. The coldest winters were recorded in the first half of the analyzed multiannual period, exceptionally cold being winters 1969/70 and 1984/85. The warmest winters occurred in the second half of the analyzed period and among seasons with the highest mean Tmax, particularly winters 2019/20 and 1989/90 stood out. In the study period, a decrease in snow cover depth statistically significant in the majority of stations in Poland was determined, as well as its variability both within the winter season and multiannual.


Sign in / Sign up

Export Citation Format

Share Document