scholarly journals The tumor vasculature an attractive CAR T cell target in solid tumors

Angiogenesis ◽  
2019 ◽  
Vol 22 (4) ◽  
pp. 473-475 ◽  
Author(s):  
Parvin Akbari ◽  
Elisabeth J. M. Huijbers ◽  
Maria Themeli ◽  
Arjan W. Griffioen ◽  
Judy R. van Beijnum

Abstract T cells armed with a chimeric antigen receptor, CAR T cells, have shown extraordinary activity against certain B lymphocyte malignancies, when targeted towards the CD19 B cell surface marker. These results have led to the regulatory approval of two CAR T cell approaches. Translation of this result to the solid tumor setting has been problematic until now. A number of differences between liquid and solid tumors are likely to cause this discrepancy. The main ones of these are undoubtedly the uncomplicated availability of the target cell within the blood compartment and the abundant expression of the target molecule on the cancerous cells in the case of hematological malignancies. Targets expressed by solid tumor cells are hard to engage due to the non-adhesive and abnormal vasculature, while conditions in the tumor microenvironment can be extremely immunosuppressive. Targets in the tumor vasculature are readily reachable by CAR T cells and reside outside the immunosuppressive tumor microenvironment. It is therefore hypothesized that targeting CAR T cells towards the tumor vasculature of solid tumors may share the excellent effects of CAR T cell therapy with that against hematological malignancies. A few reports have shown promising results. Suggestions are provided for further improvement.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A152-A153
Author(s):  
Shihong Zhang ◽  
Karan Kohli ◽  
R Graeme Black ◽  
Brian Hayes ◽  
Cassandra Miller ◽  
...  

BackgroundChimeric antigen receptor (CAR) T cell therapy has transformed therapy for hematological malignancies but has not yet been established as standard of care for any solid tumors. One obstacle for human solid tumor immunotherapy research is the lack of clinically relevant, immunocompetent animal models. In this study, we sought to establish CAR T cells for naturally occurring canine sarcomas in client owned animals as a model for human CAR T cell therapy.MethodsArchived FFPE, freshly isolated canine solid tumor samples as well as tumor lines were tested for B7H3 expression by immunohistochemistry (IHC) and flow cytometry analysis. We designed CARs using the scFv from the human B7H3-specific antibody MGA271 and confirmed the cross-reactivity to canine B7H3 (construct information see figure 1A). A truncated EGFR (tEGFR) was included in the construct to allow for IHC and flow cytometry testing for the presence of CAR T cells. Killing efficiency was evaluated using 3D tumor spheroid killing assays to monitor dynamics. Safety of the CAR products following lymphodepletion was confirmed in two healthy dogs (figure 1B).ResultsCanine solid tumors were confirmed to be B7H3 positive in almost all cases. Using the GALV-pseudotyped retrovirus system, transduction was efficient with up to 70% CAR+ cells. Post-transduction expansion was over 100 folds. B7H3 CAR transduced canine T cells were able to eliminate B7H3+ canine tumor spheroids effectively (figure 2). Safety of the CAR T cells (dose: 1 × 109/m2) were confirmed in both healthy animals following cyclophosphamide lymphodepletion. After week 6, cetuximab was given to the subjects to deplete EGFR+ cells. Subject 2 experienced fever after CAR T cell administration. Both dogs showed elevated serum ALP and ALT levels and returned to normal (figure 3). No other treatment-related adverse events were observed. Information of the CAR T cell products can be found in table 1.Abstract 139 Figure 1Construct information and safety trial design(A) Four 2nd generation CAR constructs were generated. Two B7H3 CARs were candidates for the treatment, and two HER2 CARs served as controls, as they have been shown to kill canine cancer cells. The CARs are consisted of a single chain variable fragment (scFv, either B7H3-specific MGA271 or HER2-specific FRP5), a short hinge, a transmembrane domain (tm), a canine costimulatory signaling domain (either canine CD28 or 4-1BB) and canine CD3? signaling domain. Truncated EGFR is added in the construct for CAR+ T cell detection and facilitate the depletion of CAR T cells in vivo as a safety measure. (B) Blood from the subjects were drawn 3 weeks prior to the treatment for CAR T cell production. Cyclophosphamide (Cy, 400 mg/m2) and Fludarabine (Flu, 10 mg/m2) were given to the subjects for 2 days for lymphodepletion. CAR T cells (1 × 109/m2) and cetuximab (200 mg/m2) were given to the subjects as indicated. Blood, lymph node (LN) and bone marrow (BM) aspirates were collected for CAR T cell homing and persistence analysisAbstract 139 Figure 2Killing of canine OSA spheroids by canine CAR T ce(A) Scheme of tumor cell spheroid forming and killing. The loss of GFP can be measured for cytotoxicity readout (B) FRP5 and MGA271 CAR T cells can effectively kill canine cancer spheroids. Experiments were done in triplicates and error bars indicate SDAbstract 139 Figure 3Dynamics of peripheral lymphocytes, serum ALP and Current treatment regimen effectively decreased peripheral lymphocytes number after cyclophosphamide and fludarabine administration (D-4 and D-3) and increased serum ALP and ALT level after CAR T cell infusion (D0). Dashed line in both graphs show the upper limit of ALP and ALT levels, which are both 68U/LAbstract 139 Table 1Infused CAR T cell product informationBoth subjects are adult male beagle mixConclusionsWe demonstrated that, similar to human cancers, B7H3 is a target in canine solid tumors. We successfully generated canine B7H3 specific CAR T cell products that are highly efficient at killing canine 3D tumor spheroids using a production protocol that closely models human CAR T cell production procedure and confirmed the safety in vivo. We plan to test and optimize various approaches to enhance CAR T cell efficacy for solid tumor treatment both in vitro and in canine sarcoma patients.Ethics ApprovalThe study was approved by Fred Hutchinson Cancer Research Center‘s Institutional Animal Care and Use Committee (IACUC), approval number PROTO201900860


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A140-A141
Author(s):  
David Mai ◽  
Omar Johnson ◽  
Carl June

BackgroundCAR-T cell therapy has demonstrated remarkable success in hematological malignancies but displays limited efficacy in solid tumors, which comprise most cancer cases. Recent studies suggest that CAR-T cell failure via T cell exhaustion is characterized by decreased surface CAR expression, cytotoxicity, and Th1 cytokine production, leading to reduced antitumor functionality.1 2 3 To address these issues, studies have turned to genetically knocking out or overexpressing targets associated with an exhaustion or effector phenotype, such as PD-1 knockout (KO) and c-Jun overexpression, among other candidates that are typically receptors or transcription factors.4 5 6 However, there are other underexplored factors that mediate various aspects of immune regulation. While genome-wide CRISPR screens may discover such factors, they are unlikely to reveal phenotypes for genes whose function is partially redundant, therefore promising candidates may be missed. Such candidates include post-transcriptional regulators (PTRs) that coordinate immune responses, which are less well-studied in the context of CAR-T cell function. We hypothesized that KO of these PTRs may increase CAR-T cell cytokine activity, phenotype, and persistence, potentially under long-term or exhaustion-inducing conditions, leading to increased tumor control. Ultimately, disruption of negative immune regulators could produce CAR-T cells with enhanced activity and persistence, narrowing the gap between efficacy in hematological and solid tumors.MethodsTo explore whether the disruption of two target PTRs improves solid tumor efficacy, we used CRISPR-Cas9 to genetically delete one or both PTRs in mesothelin-targeting human CAR-T cells and assayed their function in vitro and in vivo in NSG mice.ResultsWe show successful genetic deletion of these genes in post-thymic human T cells and that their disruption does not affect primary expansion (figure 1) or transduction efficiency (figure 2). These KO CAR-T cells display increased expression of co-stimulatory receptors and various cytokines (figure 3). While KO CAR-T cells are functionally similar to WT CAR-T cells in in vitro assays (figure 4), KO CAR-T cells demonstrate superior activity in vivo and can clear large, established tumors compared to WT CAR-T cells at low dose (figure 5).Abstract 131 Figure 1Expansion kinetics of KO CAR-T cellsAbstract 131 Figure 2Transduction efficiency and baseline phenotype of KO CAR-T cellsAbstract 131 Figure 3Costimulatory receptor and cytokine expression of KO CAR-T cellsAbstract 131 Figure 4In vitro cytotoxicity of KO CAR-T cellsAbstract 131 Figure 5In vivo activity of KO CAR-T cellsConclusionsThese results indicate that KO of our target PTRs may improve the potency of CAR-T cells in solid tumors and may have important implications on the development of effective solid-tumor cell therapies.ReferencesJE Wherry and M Kurachi, Molecular and cellular insights into T cell exhaustion, Nature Reviews Immunology 2015;15:486–499.EW Weber, et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 2021;372:6537.S Kuramitsu et al. Induction of T cell dysfunction and NK-like T cell differentiation in vitro and in patients after CAR T cell treatment. Cell, in revision.BD Choi et al, CRISPR-Cas9 disruption of PD-1 enhances activity of university EGFRvIII CAR T cells in a preclinical model of human glioblastoma. Journal for ImmunoTherapy of Cancer 2019;7:304.RC Lynn et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 2019;576:293–300.LJ Rupp et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Scientific Reports 2017;7:737.


2019 ◽  
Vol 116 (50) ◽  
pp. 25229-25235 ◽  
Author(s):  
Bianca von Scheidt ◽  
Minyu Wang ◽  
Amanda J. Oliver ◽  
Jack D. Chan ◽  
Metta K. Jana ◽  
...  

Responses of solid tumors to chimeric antigen receptor (CAR) T cell therapy are often minimal. This is potentially due to a lack of sustained activation and proliferation of CAR T cells when encountering antigen in a profoundly immunosuppressive tumor microenvironment. In this study, we investigate if inducing an interaction between CAR T cells and antigen-presenting cells (APCs) in lymphoid tissue, away from an immunosuppressive microenvironment, could enhance solid-tumor responses. We combined CAR T cell transfer with the bacterial enterotoxin staphylococcal enterotoxin-B (SEB), which naturally links a proportion of T cell receptor (TCR) Vβ subtypes to MHC-II, present on APCs. CAR T cell proliferation and function was significantly enhanced by SEB. Solid tumor-growth inhibition in mice was increased when CAR T cells were administered in combination with SEB. CAR T cell expansion in lymphoid tissue was demonstrated, and inhibition of lymphocyte egress from lymph nodes using FTY720 abrogated the benefit of SEB. We also demonstrate that a bispecific antibody, targeting a c-Myc tag on CAR T cells and cluster of differentiation 40 (CD40), could also enhance CAR T cell activity and mediate increased antitumor activity of CAR T cells. These model systems serve as proof-of-principle that facilitating the interaction of CAR T cells with APCs can enhance their ability to mediate antitumor activity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Faroogh Marofi ◽  
Roza Motavalli ◽  
Vladimir A. Safonov ◽  
Lakshmi Thangavelu ◽  
Alexei Valerievich Yumashev ◽  
...  

Abstract Background CARs are simulated receptors containing an extracellular single-chain variable fragment (scFv), a transmembrane domain, as well as an intracellular region of immunoreceptor tyrosine-based activation motifs (ITAMs) in association with a co-stimulatory signal. Main body Chimeric antigen receptor (CAR) T cells are genetically engineered T cells to express a receptor for the recognition of the particular surface marker that has given rise to advances in the treatment of blood disorders. The CAR T cells obtain supra-physiological properties and conduct as “living drugs” presenting both immediate and steady effects after expression in T cells surface. But, their efficacy in solid tumor treatment has not yet been supported. The pivotal challenges in the field of solid tumor CAR T cell therapy can be summarized in three major parts: recognition, trafficking, and surviving in the tumor. On the other hand, the immunosuppressive tumor microenvironment (TME) interferes with T cell activity in terms of differentiation and exhaustion, and as a result of the combined use of CARs and checkpoint blockade, as well as the suppression of other inhibitor factors in the microenvironment, very promising results were obtained from the reduction of T cell exhaustion. Conclusion Nowadays, identifying and defeating the mechanisms associated with CAR T cell dysfunction is crucial to establish CAR T cells that can proliferate and lyse tumor cells severely. In this review, we discuss the CAR signaling and efficacy T in solid tumors and evaluate the most significant barriers in this process and describe the most novel therapeutic methods aiming to the acquirement of the promising therapeutic outcome in non-hematologic malignancies.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1123
Author(s):  
Joslyn L. Mangal ◽  
Jamie L. Handlos ◽  
Arezoo Esrafili ◽  
Sahil Inamdar ◽  
Sidnee Mcmillian ◽  
...  

Chimeric antigen receptor (CAR) T cell-based therapies have shown tremendous advancement in clinical and pre-clinical studies for the treatment of hematological malignancies, such as the refractory of pre-B cell acute lymphoblastic leukemia (B-ALL), chronic lymphocytic leukemia (CLL), and large B cell lymphoma (LBCL). However, CAR T cell therapy for solid tumors has not been successful clinically. Although, some research efforts, such as combining CARs with immune checkpoint inhibitor-based therapy, have been used to expand the application of CAR T cells for the treatment of solid tumors. Importantly, further understanding of the coordination of nutrient and energy supplies needed for CAR T cell expansion and function, especially in the tumor microenvironment (TME), is greatly needed. In addition to CAR T cells, there is great interest in utilizing other types of CAR immune cells, such as CAR NK and CAR macrophages that can infiltrate solid tumors. However, the metabolic competition in the TME between cancer cells and immune cells remains a challenge. Bioengineering technologies, such as metabolic engineering, can make a substantial contribution when developing CAR cells to have an ability to overcome nutrient-paucity in the solid TME. This review introduces technologies that have been used to generate metabolically fit CAR-immune cells as a treatment for hematological malignancies and solid tumors, and briefly discusses the challenges to treat solid tumors with CAR-immune cells.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 743
Author(s):  
Aleksei Titov ◽  
Ekaterina Zmievskaya ◽  
Irina Ganeeva ◽  
Aygul Valiullina ◽  
Alexey Petukhov ◽  
...  

Adoptive cell immunotherapy (ACT) is a vibrant field of cancer treatment that began progressive development in the 1980s. One of the most prominent and promising examples is chimeric antigen receptor (CAR) T-cell immunotherapy for the treatment of B-cell hematologic malignancies. Despite success in the treatment of B-cell lymphomas and leukemia, CAR T-cell therapy remains mostly ineffective for solid tumors. This is due to several reasons, such as the heterogeneity of the cellular composition in solid tumors, the need for directed migration and penetration of CAR T-cells against the pressure gradient in the tumor stroma, and the immunosuppressive microenvironment. To substantially improve the clinical efficacy of ACT against solid tumors, researchers might need to look closer into recent developments in the other branches of adoptive immunotherapy, both traditional and innovative. In this review, we describe the variety of adoptive cell therapies beyond CAR T-cell technology, i.e., exploitation of alternative cell sources with a high therapeutic potential against solid tumors (e.g., CAR M-cells) or aiming to be universal allogeneic (e.g., CAR NK-cells, γδ T-cells), tumor-infiltrating lymphocytes (TILs), and transgenic T-cell receptor (TCR) T-cell immunotherapies. In addition, we discuss the strategies for selection and validation of neoantigens to achieve efficiency and safety. We provide an overview of non-conventional TCRs and CARs, and address the problem of mispairing between the cognate and transgenic TCRs. Finally, we summarize existing and emerging approaches for manufacturing of the therapeutic cell products in traditional, semi-automated and fully automated Point-of-Care (PoC) systems.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2087
Author(s):  
Yuna Jo ◽  
Laraib Amir Ali ◽  
Ju A Shim ◽  
Byung Ha Lee ◽  
Changwan Hong

Novel engineered T cells containing chimeric antigen receptors (CAR-T cells) that combine the benefits of antigen recognition and T cell response have been developed, and their effect in the anti-tumor immunotherapy of patients with relapsed/refractory leukemia has been dramatic. Thus, CAR-T cell immunotherapy is rapidly emerging as a new therapy. However, it has limitations that prevent consistency in therapeutic effects in solid tumors, which accounts for over 90% of all cancer patients. Here, we review the literature regarding various obstacles to CAR-T cell immunotherapy for solid tumors, including those that cause CAR-T cell dysfunction in the immunosuppressive tumor microenvironment, such as reactive oxygen species, pH, O2, immunosuppressive cells, cytokines, and metabolites, as well as those that impair cell trafficking into the tumor microenvironment. Next-generation CAR-T cell therapy is currently undergoing clinical trials to overcome these challenges. Therefore, novel approaches to address the challenges faced by CAR-T cell immunotherapy in solid tumors are also discussed here.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A234-A234
Author(s):  
Rebecca Larson ◽  
Michael Kann ◽  
Stefanie Bailey ◽  
Nicholas Haradhvala ◽  
Kai Stewart ◽  
...  

BackgroundChimeric Antigen Receptor (CAR) therapy has had a transformative impact on the treatment of hematologic malignancies1–6 but success in solid tumors remains elusive. We hypothesized solid tumors have cell-intrinsic resistance mechanisms to CAR T-cell cytotoxicity.MethodsTo systematically identify resistance pathways, we conducted a genome-wide CRISPR knockout screen in glioblastoma cells, a disease where CAR T-cells have had limited efficacy.7 8 We utilized the glioblastoma cell line U87 and targeted endogenously expressed EGFR with CAR T-cells generated from 6 normal donors for the screen. We validated findings in vitro and in vivo across a variety of human tumors and CAR T-cell antigens.ResultsLoss of genes in the interferon gamma receptor (IFNγR) signaling pathway (IFNγR1, JAK1, JAK2) rendered U87 cells resistant to CAR T-cell killing in vitro. IFNγR1 knockout tumors also showed resistance to CAR T cell treatment in vivo in a second glioblastoma line U251 in an orthotopic model. This phenomenon was irrespective of CAR target as we also observed resistance with IL13Ralpha2 CAR T-cells. In addition, resistance to CAR T-cell cytotoxicity through loss of IFNγR1 applied more broadly to solid tumors as pancreatic cell lines targeted with either Mesothelin or EGFR CAR T-cells also showed resistance. However, loss of IFNγR signaling did not impact sensitivity of liquid tumor lines (leukemia, lymphoma or multiple myeloma) to CAR T-cells in vitro or in an orthotopic model of leukemia treated with CD19 CAR. We isolated the effects of decreased cytotoxicity of IFNγR1 knockout glioblastoma tumors to be cancer-cell intrinsic because CAR T-cells had no observable differences in proliferation, activation (CD69 and LFA-1), or degranulation (CD107a) when exposed to wildtype versus knockout tumors. Using transcriptional profiling, we determined that glioblastoma cells lacking IFNγR1 had lower upregulation of cell adhesion pathways compared to wildtype glioblastoma cells after exposure to CAR T-cells. We found that loss of IFNγR1 reduced CAR T-cell binding avidity to glioblastoma.ConclusionsThe critical role of IFNγR signaling for susceptibility of solid tumors to CAR T-cells is surprising given that CAR T-cells do not require traditional antigen-presentation pathways. Instead, in glioblastoma tumors, IFNγR signaling was required for sufficient adhesion of CAR T-cells to mediate productive cytotoxicity. Our work demonstrates that liquid and solid tumors differ in their interactions with CAR T-cells and suggests that enhancing T-cell/tumor interactions may yield improved responses in solid tumors.AcknowledgementsRCL was supported by T32 GM007306, T32 AI007529, and the Richard N. Cross Fund. ML was supported by T32 2T32CA071345-21A1. SRB was supported by T32CA009216-38. NJH was supported by the Landry Cancer Biology Fellowship. JJ is supported by a NIH F31 fellowship (1F31-MH117886). GG was partially funded by the Paul C. Zamecnik Chair in Oncology at the Massachusetts General Hospital Cancer Center and NIH R01CA 252940. MVM and this work is supported by the Damon Runyon Cancer Research Foundation, Stand Up to Cancer, NIH R01CA 252940, R01CA238268, and R01CA249062.ReferencesMaude SL, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018;378:439–448.Neelapu SS, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 2017;377:2531–2544.Locke FL, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. The Lancet Oncology 2019;20:31–42.Schuster SJ, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 2017;377:2545–2554.Wang M, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med 2020;382:1331–1342.Cohen AD, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest 2019;129:2210–2221.Bagley SJ, et al. CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro-oncology 2018;20:1429–1438.Choi BD, et al. Engineering chimeric antigen receptor T cells to treat glioblastoma. J Target Ther Cancer 2017;6:22–25.Ethics ApprovalAll human samples were obtained with informed consent and following institutional guidelines under protocols approved by the Institutional Review Boards (IRBs) at the Massachusetts General Hospital (2016P001219). Animal work was performed according to protocols approved by the Institutional Animal Care and Use Committee (IACUC) (2015N000218 and 2020N000114).


Author(s):  
Ya.Yu. Kiseleva ◽  
A.M. Shishkin ◽  
A.V. Ivanov ◽  
T.M. Kulinich ◽  
V.K. Bozhenko

Adoptive immunotherapy that makes use of genetically modified autologous T cells carrying a chimeric antigen receptor (CAR) with desired specificity is a promising approach to the treatment of advanced or relapsed solid tumors. However, there are a number of challenges facing the CAR T-cell therapy, including the ability of the tumor to silence the expression of target antigens in response to the selective pressure exerted by therapy and the dampening of the functional activity of CAR T cells by the immunosuppressive tumor microenvironment. This review discusses the existing gene-engineering approaches to the modification of CAR T-cell design for 1) creating universal “switchable” synthetic receptors capable of attacking a variety of target antigens; 2) enhancing the functional activity of CAR T cells in the immunosuppressive microenvironment of the tumor by silencing the expression of inhibiting receptors or by stimulating production of cytokines.


2021 ◽  
Vol 13 (591) ◽  
pp. eabd8836
Author(s):  
Axel Hyrenius-Wittsten ◽  
Yang Su ◽  
Minhee Park ◽  
Julie M. Garcia ◽  
Josef Alavi ◽  
...  

The first clinically approved engineered chimeric antigen receptor (CAR) T cell therapies are remarkably effective in a subset of hematological malignancies with few therapeutic options. Although these clinical successes have been exciting, CAR T cells have hit roadblocks in solid tumors that include the lack of highly tumor-specific antigens to target, opening up the possibility of life-threatening “on-target/off-tumor” toxicities, and problems with T cell entry into solid tumor and persistent activity in suppressive tumor microenvironments. Here, we improve the specificity and persistent antitumor activity of therapeutic T cells with synthetic Notch (synNotch) CAR circuits. We identify alkaline phosphatase placental-like 2 (ALPPL2) as a tumor-specific antigen expressed in a spectrum of solid tumors, including mesothelioma and ovarian cancer. ALPPL2 can act as a sole target for CAR therapy or be combined with tumor-associated antigens such as melanoma cell adhesion molecule (MCAM), mesothelin, or human epidermal growth factor receptor 2 (HER2) in synNotch CAR combinatorial antigen circuits. SynNotch CAR T cells display superior control of tumor burden when compared to T cells constitutively expressing a CAR targeting the same antigens in mouse models of human mesothelioma and ovarian cancer. This was achieved by preventing CAR-mediated tonic signaling through synNotch-controlled expression, allowing T cells to maintain a long-lived memory and non-exhausted phenotype. Collectively, we establish ALPPL2 as a clinically viable cell therapy target for multiple solid tumors and demonstrate the multifaceted therapeutic benefits of synNotch CAR T cells.


Sign in / Sign up

Export Citation Format

Share Document