scholarly journals Assisting humans in privacy management: an agent-based approach

2020 ◽  
Vol 35 (1) ◽  
Author(s):  
A. Can Kurtan ◽  
Pınar Yolum

AbstractImage sharing is a service offered by many online social networks. In order to preserve privacy of images, users need to think through and specify a privacy setting for each image that they upload. This is difficult for two main reasons: first, research shows that many times users do not know their own privacy preferences, but only become aware of them over time. Second, even when users know their privacy preferences, editing these privacy settings is cumbersome and requires too much effort, interfering with the quick sharing behavior expected on an online social network. Accordingly, this paper proposes a privacy recommendation model for images using tags and an agent that implements this, namely pelte. Each user agent makes use of the privacy settings that its user have set for previous images to predict automatically the privacy setting for an image that is uploaded to be shared. When in doubt, the agent analyzes the sharing behavior of other users in the user’s network to be able to recommend to its user about what should be considered as private. Contrary to existing approaches that assume all the images are available to a centralized model, pelte is compatible to distributed environments since each agent accesses only the privacy settings of the images that the agent owner has shared or those that have been shared with the user. Our simulations on a real-life dataset shows that pelte can accurately predict privacy settings even when a user has shared a few images with others, the images have only a few tags or the user’s friends have varying privacy preferences.

Author(s):  
Khalid Alemerien

A variety of online social networking (OSNs) services facilitates users to share a huge amount of their personal information such as photos. On the other hand, users may unintentionally reveal their photos to other audiences. Therefore, users of OSNs strive to protect their photos with existing privacy management mechanisms. Moreover, users need adequate feedback to understand their privacy preferences in photo sharing services. In this paper, the authors present a new visualization mechanism called Visual Privacy Management Policy (VPMP) in order to simplify the configuring privacy settings when users of OSNs share their photos with others. Also, this solution aims to address the shortcomings of privacy settings policies of photo sharing in OSNs. Furthermore, the solution employs a social graph and circles for visualizing when, where, how and with whom users will share their photos. So, this solution provides users a comprehensible and effective way to determine their privacy settings. The authors evaluate the visual privacy management policy (VPMP) for photo sharing with a user study that compared our solution with the user interface of photo-sharing on Facebook. The obtained findings provide quantitative evidence regarding the applicability of VPMP in terms of usability and privacy protection.


Author(s):  
Fulpagare Priya K. ◽  
Nitin N. Patil

Social Network is an emerging e-service for Content Sharing Sites (CSS). It is an emerging service which provides reliable communication. Some users over CSS affect user’s privacy on their personal contents, where some users keep on sending annoying comments and messages by taking advantage of the user’s inherent trust in their relationship network. Integration of multiple user’s privacy preferences is very difficult task, because privacy preferences may create conflict. The techniques to resolve conflicts are essentially required. Moreover, these methods need to consider how users would actually reach an agreement about a solution to the conflict in order to offer solutions acceptable by all of the concerned users. The first mechanism to resolve conflicts for multi-party privacy management in social media that is able to adapt to different situations by displaying the enterprises that users make to reach a result to the conflicts. Billions of items that are uploaded to social media are co-owned by multiple users. Only the user that uploads the item is allowed to set its privacy settings (i.e. who can access the item). This is a critical problem as users’ privacy preferences for co-owned items can conflict. Multi-party privacy management is therefore of crucial importance for users to appropriately reserve their privacy in social media.


2021 ◽  
Vol 11 (2) ◽  
pp. 17-31
Author(s):  
Lanfang Zhang ◽  
Zhiyong Zhang ◽  
Ting Zhao

With the rapid development of mobile internet, a large number of online social networking platforms and tools have been widely applied. As a classic method for protecting the privacy and information security of social users, access control technology is evolving with the spatio-temporal change of social application requirements and scenarios. However, nowadays there is a lack of effective theoretical model of social spatio-temporal access control as a guide. This paper proposed a novel spatio-temporal access control model for online social network (STAC) and its visual verification, combined with the advantages of discretionary access control, using formal language to describe the access control rules based on spatio-temporal, and real-life scenarios for access control policy description, realizes a more fine-grained access control mechanism for social network. By using the access control verification tool ACPT developed by NIST to visually verify the proposed model, the security and effectiveness of the STAC model are proved.


Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1073
Author(s):  
Frank Schweitzer ◽  
Pavlin Mavrodiev ◽  
Adrian M. Seufert ◽  
David Garcia

We analyze an agent-based model to estimate how the costs and benefits of users in an online social network (OSN) impact the robustness of the OSN. Benefits are measured in terms of relative reputation that users receive from their followers. They can be increased by direct and indirect reciprocity in following each other, which leads to a core-periphery structure of the OSN. Costs relate to the effort to login, to maintain the profile, etc. and are assumed as constant for all users. The robustness of the OSN depends on the entry and exit of users over time. Intuitively, one would expect that higher costs lead to more users leaving and hence to a less robust OSN. We demonstrate that an optimal cost level exists, which maximizes both the performance of the OSN, measured by means of the long-term average benefit of its users, and the robustness of the OSN, measured by means of the lifetime of the core of the OSN. Our mathematical and computational analyses unfold how changes in the cost level impact reciprocity and subsequently the core-periphery structure of the OSN, to explain the optimal cost level.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Dayong Zhang ◽  
Guang Guo

Online social networks appear to enrich our social life, which raises the question whether they remove cognitive constraints on human communication and improve human social capabilities. In this paper, we analyze the users' following and followed relationships based on the data of Sina Microblogging and reveal several structural properties of Sina Microblogging. Compared with real-life social networks, our results confirm some similar features. However, Sina Microblogging also shows its own specialties, such as hierarchical structure and degree disassortativity, which all mark a deviation from real-life social networks. The low cost of the online network forms a broader perspective, and the one-way link relationships make it easy to spread information, but the online social network does not make too much difference in the creation of strong interpersonal relationships. Finally, we describe the mechanisms for the formation of these characteristics and discuss the implications of these structural properties for the real-life social networks.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 681
Author(s):  
László Barna Iantovics

Current machine intelligence metrics rely on a different philosophy, hindering their effective comparison. There is no standardization of what is machine intelligence and what should be measured to quantify it. In this study, we investigate the measurement of intelligence from the viewpoint of real-life difficult-problem-solving abilities, and we highlight the importance of being able to make accurate and robust comparisons between multiple cooperative multiagent systems (CMASs) using a novel metric. A recent metric presented in the scientific literature, called MetrIntPair, is capable of comparing the intelligence of only two CMASs at an application. In this paper, we propose a generalization of that metric called MetrIntPairII. MetrIntPairII is based on pairwise problem-solving intelligence comparisons (for the same problem, the problem-solving intelligence of the studied CMASs is evaluated experimentally in pairs). The pairwise intelligence comparison is proposed to decrease the necessary number of experimental intelligence measurements. MetrIntPairII has the same properties as MetrIntPair, with the main advantage that it can be applied to any number of CMASs conserving the accuracy of the comparison, while it exhibits enhanced robustness. An important property of the proposed metric is the universality, as it can be applied as a black-box method to intelligent agent-based systems (IABSs) generally, not depending on the aspect of IABS architecture. To demonstrate the effectiveness of the MetrIntPairII metric, we provide a representative experimental study, comparing the intelligence of several CMASs composed of agents specialized in solving an NP-hard problem.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 666
Author(s):  
Davide Calvaresi ◽  
Jean-Paul Calbimonte ◽  
Enrico Siboni ◽  
Stefan Eggenschwiler ◽  
Gaetano Manzo ◽  
...  

Context. Asynchronous messaging is increasingly used to support human–machine interactions, generally implemented through chatbots. Such virtual entities assist the users in activities of different kinds (e.g., work, leisure, and health-related) and are becoming ingrained into humans’ habits due to factors including (i) the availability of mobile devices such as smartphones and tablets, (ii) the increasingly engaging nature of chatbot interactions, (iii) the release of dedicated APIs from messaging platforms, and (iv) increasingly complex AI-based mechanisms to power the bots’ behaviors. Nevertheless, most of the modern chatbots rely on state machines (implementing conversational rules) and one-fits-all approaches, neglecting personalization, data-stream privacy management, multi-topic management/interconnection, and multimodal interactions. Objective. This work addresses the challenges above through an agent-based framework for chatbot development named EREBOTS. Methods. The foundations of the framework are based on the implementation of (i) multi-front-end connectors and interfaces (i.e., Telegram, dedicated App, and web interface), (ii) enabling the configuration of multi-scenario behaviors (i.e., preventive physical conditioning, smoking cessation, and support for breast-cancer survivors), (iii) online learning, (iv) personalized conversations and recommendations (i.e., mood boost, anti-craving persuasion, and balance-preserving physical exercises), and (v) responsive multi-device monitoring interface (i.e., doctor and admin). Results. EREBOTS has been tested in the context of physical balance preservation in social confinement times (due to the ongoing pandemic). Thirteen individuals characterized by diverse age, gender, and country distribution have actively participated in the experimentation, reporting advancements in the physical balance and overall satisfaction of the interaction and exercises’ variety they have been proposed.


2021 ◽  
Vol 15 (3) ◽  
pp. 1-50
Author(s):  
Andrea De Salve ◽  
Paolo Mori ◽  
Barbara Guidi ◽  
Laura Ricci ◽  
Roberto Di Pietro

The widespread adoption of Online Social Networks (OSNs), the ever-increasing amount of information produced by their users, and the corresponding capacity to influence markets, politics, and society, have led both industrial and academic researchers to focus on how such systems could be influenced . While previous work has mainly focused on measuring current influential users, contents, or pages on the overall OSNs, the problem of predicting influencers in OSNs has remained relatively unexplored from a research perspective. Indeed, one of the main characteristics of OSNs is the ability of users to create different groups types, as well as to join groups defined by other users, in order to share information and opinions. In this article, we formulate the Influencers Prediction problem in the context of groups created in OSNs, and we define a general framework and an effective methodology to predict which users will be able to influence the behavior of the other ones in a future time period, based on historical interactions that occurred within the group. Our contribution, while rooted in solid rationale and established analytical tools, is also supported by an extensive experimental campaign. We investigate the accuracy of the predictions collecting data concerning the interactions among about 800,000 users from 18 Facebook groups belonging to different categories (i.e., News, Education, Sport, Entertainment, and Work). The achieved results show the quality and viability of our approach. For instance, we are able to predict, on average, for each group, around a third of what an ex-post analysis will show being the 10 most influential members of that group. While our contribution is interesting on its own and—to the best of our knowledge—unique, it is worth noticing that it also paves the way for further research in this field.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sunyoung Park ◽  
Lasse Gerrits

AbstractAlthough migration has long been an imperative topic in social sciences, there are still needs of study on migrants’ unique and dynamic transnational identity, which heavily influences the social integration in the host society. In Online Social Network (OSN), where the contemporary migrants actively communicate and share their stories the most, different challenges against migrants’ belonging and identity and how they cope or reconcile may evidently exist. This paper aims to scrutinise how migrants are manifesting their belonging and identity via different technological types of online social networks, to understand the relations between online social networks and migrants’ multi-faceted transnational identity. The research introduces a comparative case study on an online social movement led by Koreans in Germany via their online communities, triggered by a German TV advertisement considered as stereotyping East Asians given by white supremacy’s point of view. Starting with virtual ethnography on three OSNs representing each of internet generations (Web 1.0 ~ Web 3.0), two-step Qualitative Data Analysis is carried out to examine how Korean migrants manifest their belonging and identity via their views on “who we are” and “who are others”. The analysis reveals how Korean migrants’ transnational identities differ by their expectation on the audience and the members in each online social network, which indicates that the distinctive features of the online platform may encourage or discourage them in shaping transnational identity as a group identity. The paper concludes with the two main emphases: first, current OSNs comprising different generational technologies play a significant role in understanding the migrants’ dynamic social values, and particularly, transnational identities. Second, the dynamics of migrants’ transnational identity engages diverse social and situational contexts. (keywords: transnational identity, migrants’ online social networks, stereotyping migrants, technological evolution of online social network).


2014 ◽  
Vol 278 ◽  
pp. 250-266 ◽  
Author(s):  
Guoyin Jiang ◽  
Feicheng Ma ◽  
Jennifer Shang ◽  
Patrick Y.K. Chau

Sign in / Sign up

Export Citation Format

Share Document