Schmitt trigger based single-ended voltage amplifier for ultra-low-voltage supplies

Author(s):  
Luís Henrique Rodovalho
2018 ◽  
Vol 65 (9) ◽  
pp. 1239-1243 ◽  
Author(s):  
Luiz Alberto Pasini Melek ◽  
Marcio Cherem Schneider ◽  
Carlos Galup-Montoro

2013 ◽  
Vol 7 (4) ◽  
Author(s):  
Haroon Rashid ◽  
Md. Mamun ◽  
Md. Syedul Amin ◽  
Hafizah Husain

Author(s):  
Abderrezak Marzaki ◽  
V. Bidal ◽  
R. Laffont ◽  
W. Rahajandraibe ◽  
J-M. Portal ◽  
...  

This paper presents different low voltage adjustable CMOS Schmitt trigger using DCG-FGT transistor. Simple circuits are introduced to provide flexibility to program the hysteresic threshold in this paper. The hysteresis can be controlled accurately at a large voltage range. The proposed Schmitt trigger have been designed using 90nm 1.2V CMOS technology and simulated using Eldo with PSP device models. The simulation results show rail-to-rail operation and adjustable switching voltages <em>V<sub>TH- </sub></em>(low switching voltage) and <em>V<sub>TH+ </sub></em>(high switching voltage).


2017 ◽  
Vol 50 (3) ◽  
pp. 975-977 ◽  
Author(s):  
Hyeokmin Choe ◽  
Stefan Heidbrink ◽  
Michael Ziolkowski ◽  
Ullrich Pietsch ◽  
Vadim Dyadkin ◽  
...  

A new data acquisition system forin situtime-resolved three-dimensional reciprocal space mapping is reported. The system is based on a programmable microcontroller for generating a functional low-voltage signal, a pixel area detector serving as a master clock and a high-voltage amplifier. Both Bragg and diffuse scattering can be mapped in a large volume of reciprocal space under an alternating electric field of a pre-programmed shape. The system has been tested at the Swiss–Norwegian Beamline BM01 of the European Synchrotron by measuring the electric field dependence of diffuse X-ray scattering from a functional perovskite-based ferroelectric single crystal.


2019 ◽  
Vol 29 (04) ◽  
pp. 2020002
Author(s):  
Yasin Bastan ◽  
Parviz Amiri

A digital-based Pseudo-differential Schmitt trigger is proposed in this paper which is suitable for ultra-low voltages and pure digital integrated circuit technologies. The proposed Schmitt trigger is implemented according to the design procedure of an analog Schmitt trigger and only using digital CMOS inverters. It is composed of a differential comparator consisting of two CMOS inverters and a cross-coupled inverter pair positive feedback which has simultaneously two outputs of noninverting and inverting. The proposed circuit is the only digital Schmitt trigger which operates in differential mode and its hysteresis center can be changed by the input voltage. Implementing the circuit in digital-based allows the proposed Schmitt trigger to operate in 0.4[Formula: see text]V ultra-low-voltage. Principle operation of the proposed circuit is discussed theoretically and using formulas and its performance is verified by simulation in TSMC 0.18[Formula: see text][Formula: see text]m CMOS process. The proposed circuit occupies only [Formula: see text][Formula: see text][Formula: see text]m2 chip area due to the very low number of transistors. The hysteresis width of the proposed Schmitt trigger is 205[Formula: see text]mV and consumes only 6.64[Formula: see text]nW power.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abhay Sanjay Vidhyadharan ◽  
Sanjay Vidhyadharan

Purpose Tunnel field effect transistors (TFETs) have significantly steeper sub-threshold slope (24–30 mv/decade), as compared with the conventional metal–oxide–semiconductor field-effect transistors (MOSFETs), which have a sub-threshold slope of 60 mv/decade at room temperature. The steep sub-threshold slope of TFETs enables a much faster switching, making TFETs a better option than MOSFETs for low-voltage VLSI applications. The purpose of this paper is to present a novel hetero-junction TFET-based Schmitt triggers, which outperform the conventional complementary metal oxide semiconductor (CMOS) Schmitt triggers at low power supply voltage levels. Design/methodology/approach The conventional Schmitt trigger has been implemented with both MOSFETs and HTFETs for operation at a low-voltage level of 0.4 V and a target hysteresis width of 100 mV. Simulation results have indicated that the HTFET-based Schmitt trigger not only has significantly lower delays but also consumes lesser power as compared to the CMOS-based Schmitt trigger. The limitations of the conventional Schmitt trigger design have been analysed, and improved CMOS and CMOS–HTFET hybrid Schmitt trigger designs have been presented. Findings The conventional Schmitt trigger implemented with HTFETs has 99.9% lower propagation delay (29ps) and 41.2% lesser power requirement (4.7 nW) than the analogous CMOS Schmitt trigger, which has a delay of 36 ns and consumes 8 nW of power. An improved Schmitt trigger design has been proposed which has a transistor count of only six as compared to the eight transistors required in the conventional design. The proposed improved Schmitt trigger design, when implemented with only CMOS devices enable a reduction of power delay product (PDP) by 98.4% with respect to the CMOS conventional Schmitt trigger design. The proposed CMOS–HTFET hybrid Schmitt trigger further helps in decreasing the delay of the improved CMOS-only Schmitt trigger by 70% and PDP by 21%. Originality/value The unique advantage of very steep sub-threshold slope of HTFETs has been used to improve the performance of the conventional Schmitt trigger circuit. Novel CMOS-only and CMOS–HTFET hybrid improved Schmitt trigger designs have been proposed which requires lesser number of transistors (saving 70% chip area) for implementation and has significantly lower delays and power requirement than the conventional designs.


Sign in / Sign up

Export Citation Format

Share Document