Nonlinear characteristics of circular-cylinder piezoelectric power harvester near resonance based on flow-induced flexural vibration mode

2014 ◽  
Vol 35 (2) ◽  
pp. 229-236 ◽  
Author(s):  
Hai-ren Wang ◽  
Jie-min Xie ◽  
Xuan Xie ◽  
Yuan-tai Hu ◽  
Ji Wang
2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Hongping Hu ◽  
Longxiang Dai ◽  
Hao Chen ◽  
Shan Jiang ◽  
Hairen Wang ◽  
...  

We propose two methods to broaden the operation bandwidth of a nonlinear pinned–pinned piezoelectric bimorph power harvester. The energy-scavenging structure consists of a properly poled and electroded flexible bimorph with a metallic layer in the middle, and is subjected to flexural vibration. Nonlinear effects at large deformations near resonance are considered by taking the in-plane extension of the bimorph into account. The resulting output powers are multivalued and exhibit jump phenomena. Two methods to broaden the operation bandwidth are proposed: The first method is to extend the operation frequency to the left single-valued region through optimal design. The second method is to excite optimal initial conditions with a voltage source. Larger output powers in the multivalued region of the nonlinear harvester are obtained. Hence, the operation bandwidth is broadened from the left single-valued region to the whole multivalued region.


2008 ◽  
Vol 20 (5) ◽  
pp. 569-574 ◽  
Author(s):  
Zengtao Yang ◽  
Jiashi Yang

We analyze coupled flexural vibration of two elastically and electrically connected piezoelectric beams near resonance for converting mechanical vibration energy to electrical energy. Each beam is a so-called piezoelectric bimorph with two layers of piezoelectrics. The 1D equations for bending of piezoelectric beams are used for a theoretical analysis. An exact analytical solution to the beam equations is obtained. Numerical results based on the solution show that the two resonances of individual beams can be tuned as close as desired by design when they are connected to yield a wide-band electrical output. Therefore, the structure can be used as a wide-band piezoelectric power harvester.


2013 ◽  
Vol 30 (1) ◽  
pp. 97-102 ◽  
Author(s):  
H. R. Wang ◽  
X. Xie ◽  
Y. T. Hu ◽  
J. Wang

ABSTRACTThe nonlinear characteristics of a simply-supported three-layer circular piezoelectric plate-like power harvester near resonance are examined in the paper, where the energy-scavenging structure consists of two properly poled piezoceramic layers separated by a central metallic layer. The structure is subjected to a uniform harmonic pressure on the upper surface. Nonlinear effects of large deflection near resonance to induce the incidental in-plane extension are considered. Results on output powers are presented, which exhibit multi-valuedness and jump phenomena.


2011 ◽  
Vol 411 ◽  
pp. 245-249
Author(s):  
Shao Kang Li ◽  
Wei Ren ◽  
Xiao Feng Chen ◽  
Xi Yao

The mass sensitivity of a piezoelectric diaphragm biosensor has been investigated. The piezoelectric diaphragm utilizing a flexural vibration mode is an acoustic wave device which can be immobilized with a bio-molecular recognition layer on its surface. The mass sensitivity of the sensor was analyzed by the approximately theoretical and FEM methods, respectively. The sensitivity formula expressed by the structural parameters and the material parameter was educed for easy computing. The procedure utilizing Rayleigh method for the analytic solution of the sensitivity was introduced. The expression was verified by using a commercial FEM software package, ANSYS. The simulations are well consistent with the theory.


Micromachines ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 928 ◽  
Author(s):  
Haoran Wang ◽  
Yifei Ma ◽  
Hao Yang ◽  
Huabei Jiang ◽  
Yingtao Ding ◽  
...  

Photoacoustic imaging (PAI) is drawing extensive attention and gaining rapid development as an emerging biomedical imaging technology because of its high spatial resolution, large imaging depth, and rich optical contrast. PAI has great potential applications in endoscopy, but the progress of endoscopic PAI was hindered by the challenges of manufacturing and assembling miniature imaging components. Over the last decade, microelectromechanical systems (MEMS) technology has greatly facilitated the development of photoacoustic endoscopes and extended the realm of applicability of the PAI. As the key component of photoacoustic endoscopes, micromachined ultrasound transducers (MUTs), including piezoelectric MUTs (pMUTs) and capacitive MUTs (cMUTs), have been developed and explored for endoscopic PAI applications. In this article, the recent progress of pMUTs (thickness extension mode and flexural vibration mode) and cMUTs are reviewed and discussed with their applications in endoscopic PAI. Current PAI endoscopes based on pMUTs and cMUTs are also introduced and compared. Finally, the remaining challenges and future directions of MEMS ultrasound transducers for endoscopic PAI applications are given.


1980 ◽  
Vol 47 (3) ◽  
pp. 662-666 ◽  
Author(s):  
Z. Celep

In this paper, the free flexural vibration of an elastic rectangular plate having initial imperfection is investigated including the effects of transverse shear and rotatory inertia. It is assumed that the vibration occurs with large amplitudes which leads to nonlinear differantial equations. On the basis of an assumed vibration mode, the modal equation of the plate is obtained and solved numerically.


Sign in / Sign up

Export Citation Format

Share Document