Study on a straight dislocation in an icosahedral quasicrystal with piezoelectric effects

2018 ◽  
Vol 39 (9) ◽  
pp. 1259-1266 ◽  
Author(s):  
Lianhe Li ◽  
Guanting Liu
Author(s):  
Wang Rong ◽  
Ma Lina ◽  
K.H. Kuo

Up to now, decagonal quasicrystals have been found in the alloys of whole Al-Pt group metals [1,2]. The present paper is concerned with the TEM study of a hitherto unreported hexagonal phase in rapidly solidified Al-Ir, Al-Pd and Al-Pt alloys.The ribbons of Al5Ir, Al5Pd and Al5Pt were obtained by spun-quenching. Specimens cut from the ribbons were ion thinned and examined in a JEM 100CX electron microscope. In both rapidly solidified Al5Ir and Al5Pd alloys, the decagonal quasicrystal, with rosette or dendritic morphologies can be easily identified by its electron diffraction patterns(EDPs). The EDPs of the decagonal phase for the two alloys are quite similar. However, the existance of decagonal quasicrystal in the Al-Pt alloy has not been verified by our TEM study. It is probably for the reason that the cooling rate is not great enough for the Al5Pt alloy to form the decagonal phase. During the TEM study, a metastable hexagonal phase has been observed in the Al5Ir, Al5Pd and Al5Pt alloys. The lattic parameters calculated from the X-ray powder data of this phase are a=1.229 and c=2.647nm(Al-Pd) and a=1.231 and c=2.623nm(Al-Ir). The composition of this phase was determined by EDS analysis as Al4(Ir, Pd or Pt). It coexists with the decagonal phase in the alloys and transformed to other stable crystalline phases on heating to high temperature. A comparison between the EDPs of the hexagonal and the decagonal phase are shown in Fig.l. Fig. 1(a) is the EDPs of the decagonal phase in various orientions and the EDPs of the hexagonal phase are shown in Fig.1(b), in a similar arrangement as Fig.1(a). It can be clearly seen that the EDPs of the hexagonal phase, especially the distribution of strong spots, are quite similar to their partners of the decagonal quasicrystal in Fig.1(a). All the angles, shown in Fig.l, between two corresponding EDPs are very close to each other. All of these seem strongly to point out that a close structural relationshipexists between these two phases:[110]//d10 [001]//d2(D) //d2 (P)The structure of α-AlFeSi is well known [3] and the 54-atom Mackay icosahedron with double icosahedral shells in the α-AlFeSi structure [4] have been used to model the icosahedral quasicrystal structure. Fig.2(a) and (b) show, respectively, the [110] and [001] projections of the crystal structure of α- AlFeSi, and decagon-pentagons can easily be identified in the former and hexagons in the latter. In addition, the optical transforms of these projections show clearly decagons and hexagons of strong spots, quite similar to those in [110] and [001] EDPs in Fig.1(b). This not only proves the Al(Ir, Pt, Pd) metastable phase being icostructural with the α-AlFeSi phase but also explains the orientation relationship mentioned above.


2020 ◽  
Author(s):  
Changjun Cheng ◽  
Yuan Xiao ◽  
Michel J.R. Haché ◽  
Zhiying Liu ◽  
Alla S. Sologubenko ◽  
...  

Author(s):  
Ted Janssen ◽  
Gervais Chapuis ◽  
Marc de Boissieu

The law of rational indices to describe crystal faces was one of the most fundamental law of crystallography and is strongly linked to the three-dimensional periodicity of solids. This chapter describes how this fundamental law has to be revised and generalized in order to include the structures of aperiodic crystals. The generalization consists in using for each face a number of integers, with the number corresponding to the rank of the structure, that is, the number of integer indices necessary to characterize each of the diffracted intensities generated by the aperiodic system. A series of examples including incommensurate multiferroics, icosahedral crystals, and decagonal quaiscrystals illustrates this topic. Aperiodicity is also encountered in surfaces where the same generalization can be applied. The chapter discusses aperiodic crystal morphology, including icosahedral quasicrystal morphology, decagonal quasicrystal morphology, and aperiodic crystal surfaces; magnetic quasiperiodic systems; aperiodic photonic crystals; mesoscopic quasicrystals, and the mineral calaverite.


2021 ◽  
pp. 108128652110134
Author(s):  
B. Zhang ◽  
X.H. Wang ◽  
L. Elmaimouni ◽  
J.G. Yu ◽  
X.M. Zhang

In one-dimensional hexagonal piezoelectric quasi-crystals, there exist the phonon–phason, electro–phonon, and electro–phason couplings. Therefore, the phonon–phason coupling and piezoelectric effects on axial guided wave characteristics in one-dimensional hexagonal functionally graded piezoelectric quasi-crystal (FGPQC) cylinders are investigated by utilizing the Legendre polynomial series method. The dispersion curves and cut-off frequencies are illustrated. Wave characteristics in three hollow cylinders with different quasi-periodic directions are comparatively studied. Some new wave phenomena are revealed: the phonon–phason coupling and piezoelectric effects on the longitudinal and torsional phonon modes ( N = 0) vary as the quasi-periodic direction changes; the phonon–phason coupling effect on flexural–torsional modes in the r-, z-FGPQC hollow cylinders, and on flexural–longitudinal modes in ϑ-FGPQC hollow cylinders increases as N increases. The corresponding results obtained in this work lay the theoretical foundation for the design and manufacture of piezoelectric transducers with high resolution and energy-conversion efficiency.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yixuan Lin ◽  
Yuqiong Zhang ◽  
Fan Zhang ◽  
Meining Zhang ◽  
Dalong Li ◽  
...  

AbstractThe electroactive β-phase in Poly (vinylidene fluoride, PVDF) is the most desirable conformation due to its highest pyro- and piezoelectric properties, which make it feasible to be used as flexible sensors, wearable electronics, and energy harvesters etc. In this study, we successfully developed a method to obtain high-content β-phase PVDF films and nanofiber meshes by mechanical stretching and electric spinning. The phase transition process and pyro- and piezoelectric effects of stretched films and nanofiber meshes were characterized by monitoring the polarized light microscopy (PLM) images, outputting currents and open-circuit voltages respectively, which were proved to be closely related to stretching ratio (λ) and concentrations. This study could expand a new route for the easy fabrication and wide application of PVDF films or fibers in wearable electronics, sensors, and energy harvesting devices.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 643
Author(s):  
Soo-Ho Jo ◽  
Byeng D. Youn

Several previous studies have been dedicated to incorporating double defect modes of a phononic crystal (PnC) into piezoelectric energy harvesting (PEH) systems to broaden the bandwidth. However, these prior studies are limited to examining an identical configuration of the double defects. Therefore, this paper aims to propose a new design concept for PnCs that examines differently configured double defects for broadband elastic wave energy localization and harvesting. For example, a square-pillar-type unit cell is considered and a defect is considered to be a structure where one piezoelectric patch is bonded to a host square lattice in the absence of a pillar. When the double defects introduced in a PnC are sufficiently distant from each other to implement decoupling behaviors, each defect oscillates like a single independent defect. Here, by differentiating the geometric dimensions of two piezoelectric patches, the defects’ dissimilar equivalent inertia and stiffness contribute to individually manipulating defect bands that correspond to each defect. Hence, with adequately designed piezoelectric patches that consider both the piezoelectric effects on shift patterns of defect bands and the characteristics for the output electric power obtained from a single-defect case, we can successfully localize and harvest the elastic wave energy transferred in broadband frequencies.


Sign in / Sign up

Export Citation Format

Share Document