scholarly journals Apoptosis-like cell death pathways in the unicellular parasite Toxoplasma gondii following treatment with apoptosis inducers and chemotherapeutic agents: a proof-of-concept study

APOPTOSIS ◽  
2013 ◽  
Vol 18 (6) ◽  
pp. 664-680 ◽  
Author(s):  
Ayu Dewi Ni Nyoman ◽  
Carsten G. K. Lüder
Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1313
Author(s):  
Man Wang ◽  
Shuai Jiang ◽  
Yinfeng Zhang ◽  
Peifeng Li ◽  
Kun Wang

Cancer is a category of diseases involving abnormal cell growth with the potential to invade other parts of the body. Chemotherapy is the most widely used first-line treatment for multiple forms of cancer. Chemotherapeutic agents act via targeting the cellular apoptotic pathway. However, cancer cells usually acquire chemoresistance, leading to poor outcomes in cancer patients. For that reason, it is imperative to discover other cell death pathways for improved cancer intervention. Pyroptosis is a new form of programmed cell death that commonly occurs upon pathogen invasion. Pyroptosis is marked by cell swelling and plasma membrane rupture, which results in the release of cytosolic contents into the extracellular space. Currently, pyroptosis is proposed to be an alternative mode of cell death in cancer treatment. Accumulating evidence shows that the key components of pyroptotic cell death pathways, including inflammasomes, gasdermins and pro-inflammatory cytokines, are involved in the initiation and progression of cancer. Interfering with pyroptotic cell death pathways may represent a promising therapeutic option for cancer management. In this review, we describe the current knowledge regarding the biological significance of pyroptotic cell death pathways in cancer pathogenesis and also discuss their potential therapeutic utility.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2009 ◽  
Author(s):  
Dominique Delmas ◽  
Jianbo Xiao ◽  
Anne Vejux ◽  
Virginie Aires

Silymarin extracted from milk thistle consisting of flavonolignan silybin has shown chemopreventive and chemosensitizing activity against various cancers. The present review summarizes the current knowledge on the potential targets of silymarin against various cancers. Silymarin may play on the system of xenobiotics, metabolizing enzymes (phase I and phase II) to protect normal cells against various toxic molecules or to protect against deleterious effects of chemotherapeutic agents on normal cells. Furthermore, silymarin and its main bioactive compounds inhibit organic anion transporters (OAT) and ATP-binding cassettes (ABC) transporters, thus contributing to counteracting potential chemoresistance. Silymarin and its derivatives play a double role, namely, limiting the progression of cancer cells through different phases of the cycle—thus forcing them to evolve towards a process of cell death—and accumulating cancer cells in a phase of the cell cycle—thus making it possible to target a greater number of tumor cells with a specific anticancer agent. Silymarin exerts a chemopreventive effect by inducing intrinsic and extrinsic pathways and reactivating cell death pathways by modulation of the ratio of proapoptotic/antiapoptotic proteins and synergizing with agonists of death domains receptors. In summary, we highlight how silymarin may act as a chemopreventive agent and a chemosensitizer through multiple pathways.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Shu-Yi Yang ◽  
Hui-Min Wang ◽  
Tai-Wen Wu ◽  
Yi-Ju Chen ◽  
Jeng-Jer Shieh ◽  
...  

Subamolide B is a butanolide isolated fromCinnamomum subavenium, a medicinal plant traditionally used to treat various ailments including carcinomatous swelling. We herein reported for the first time that subamolide B potently induced cytotoxicity against diverse human skin cancer cell lines while sparing nonmalignant cells. Mechanistic studies on human cutaneous squamous cell carcinoma (SCC) cell line SCC12 highlighted the involvement of apoptosis in subamolide B-induced cytotoxicity, as evidenced by the activation of caspases-8, -9, -4, and -3, the increase in annexin V-positive population, and the partial restoration of cell viability by cotreatment with the pan-caspase inhibitor z-VAD-fmk. Additionally, subamolide B evoked cell death pathways mediated by FasL/Fas, mitochondria, and endoplasmic reticulum (ER) stress, as supported by subamolide B-induced FasL upregulation, BCL-2 suppression/cytosolic release of cytochrome c, and UPR activation/CHOP upregulation, respectively. Noteworthy, ectopic expression of c-FLIPLor dominant-negative mutant of FADD failed to impair subamolide B-induced cytotoxicity, whereas BCL-2 overexpression or CHOP depletion greatly rescued subamolide B-stimulated cells. Collectively, these results underscored the central role of mitochondrial and CHOP-mediated cell death pathways in subamolide B-induced cytotoxicity. Our findings further implicate the potential of subamolide B for cutaneous SCC therapy or as a lead compound for developing novel chemotherapeutic agents.


2019 ◽  
Vol 27 (2) ◽  
pp. 451-465 ◽  
Author(s):  
Katarzyna Groborz ◽  
Monica L. Gonzalez Ramirez ◽  
Scott J. Snipas ◽  
Guy S. Salvesen ◽  
Marcin Drąg ◽  
...  

2017 ◽  
Vol 32 (3) ◽  
pp. 199-205
Author(s):  
Han Seong Yun ◽  
◽  
Soo Hwan Suh ◽  
Hyo-Sun Kwak ◽  
In-Sun Joo

2020 ◽  
Vol 48 (3) ◽  
pp. 137-152
Author(s):  
Marko Manevski ◽  
Dinesh Devadoss ◽  
Ruben Castro ◽  
Lauren Delatorre ◽  
Adriana Yndart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document