Variable equation of state for Bianchi type-VI0 dark energy models

2010 ◽  
Vol 333 (1) ◽  
pp. 295-303 ◽  
Author(s):  
Hassan Amirhashchi ◽  
Anirudh Pradhan ◽  
Bijan Saha
2010 ◽  
Vol 19 (04) ◽  
pp. 475-487 ◽  
Author(s):  
UTPAL MUKHOPADHYAY ◽  
SAIBAL RAY ◽  
FAROOK RAHAMAN

Two phenomenological variable Λ models, viz.Λ ~ (ȧ/a)2 and Λ ~ ρ, have been studied under the assumption that the equation of state parameter ω is a function of time. The selected Λ models are found to be equivalent both in four and five dimensions. The possibility of signature flip of the deceleration parameter is also shown.


2010 ◽  
Vol 19 (14) ◽  
pp. 2325-2330
Author(s):  
SOURISH DUTTA ◽  
ROBERT J. SCHERRER ◽  
STEPHEN D. H. HSU

We propose a class of simple dark energy models which predict a late-time dark radiation component and a distinctive time-dependent equation of state w(z) for redshift z < 3. The dark energy field can be coupled strongly enough to standard model particles to be detected in colliders, and the model requires only modest additional particle content and little or no fine-tuning other than a new energy scale of order milli-electron volts.


2010 ◽  
Vol 332 (2) ◽  
pp. 497-502 ◽  
Author(s):  
K. S. Adhav ◽  
A. S. Bansod ◽  
S. L. Munde ◽  
R. G. Nakwal

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
M. Younas ◽  
Abdul Jawad ◽  
Saba Qummer ◽  
H. Moradpour ◽  
Shamaila Rani

Recently, Tsallis, Rényi, and Sharma-Mittal entropies have widely been used to study the gravitational and cosmological setups. We consider a flat FRW universe with linear interaction between dark energy and dark matter. We discuss the dark energy models using Tsallis, Rényi, and Sharma-Mittal entropies in the framework of Chern-Simons modified gravity. We explore various cosmological parameters (equation of state parameter, squared sound of speed ) and cosmological plane (ωd-ωd′, where ωd′ is the evolutionary equation of state parameter). It is observed that the equation of state parameter gives quintessence-like nature of the universe in most of the cases. Also, the squared speed of sound shows stability of Tsallis and Rényi dark energy model but unstable behavior for Sharma-Mittal dark energy model. The ωd-ωd′ plane represents the thawing region for all dark energy models.


2019 ◽  
Vol 34 (30) ◽  
pp. 1950184
Author(s):  
M. Umair Shahzad ◽  
Nadeem Azhar ◽  
Abdul Jawad ◽  
Shamaila Rani

The reconstruction scenario of well-established dark energy models such as pilgrim dark energy model and generalized ghost dark energy with Hubble horizon and [Formula: see text] models is being considered. We have established [Formula: see text] models and analyzed their viability through equation of state parameter and [Formula: see text] (where prime denotes derivative with respect to [Formula: see text]) plane. The equation of state parameter evolutes the universe in three different phases such as quintessence, vacuum and phantom. However, the [Formula: see text] plane also describes the thawing as well as freezing region of the universe. The recent observational data also favor our results.


2019 ◽  
Vol 34 (11) ◽  
pp. 1950086 ◽  
Author(s):  
M. Abdollahi Zadeh ◽  
A. Sheykhi ◽  
H. Moradpour

Using the non-extensive Tsallis entropy and the holographic hypothesis, we propose a new dark energy (DE) model with timescale as infrared (IR) cutoff. Considering the age of the Universe as well as the conformal time as IR cutoffs, we investigate the cosmological consequences of the proposed DE models and study the evolution of the Universe filled by a pressureless matter and the obtained DE candidates. We find that although this model can describe the late time acceleration and the density, deceleration and the equation of state parameters show satisfactory behavior by themselves, these models are classically unstable unless the interaction between the two dark sectors of the Universe is taken into account. In addition, the results of the existence of a mutual interaction between the cosmos sectors are also addressed. We find out that the interacting models are stable at the classical level which is in contrast to the original interacting agegraphic dark energy models which are classically unstable [K. Y. Kim, H. W. Lee and Y. S. Myung, Phys. Lett. B 660, 118 (2008)].


2009 ◽  
Vol 18 (09) ◽  
pp. 1331-1342 ◽  
Author(s):  
WEN ZHAO

We investigate the attractor solution in the coupled Yang–Mills field dark energy models with the general interaction term, and obtain the constraint equations for the interaction if the attractor solution exists. The research also shows that, if the attractor solution exists, the equation of state of dark energy must evolve from wy > 0 to wy ≤ -1, which is slightly suggested by the observation. At the same time, the total equation of state in the attractor solution is w tot = -1, the universe is a de Sitter expansion, and the cosmic big rip is naturally avoided. These features are all independent of the interacting forms.


Sign in / Sign up

Export Citation Format

Share Document