scholarly journals Testing cosmological models with the brightness profile of distant galaxies

2021 ◽  
Vol 366 (11) ◽  
Author(s):  
I. Olivares-Salaverri ◽  
Marcelo B. Ribeiro
Author(s):  
Abraham Loeb ◽  
Steven R. Furlanetto

This book provides a comprehensive, self-contained introduction to one of the most exciting frontiers in astrophysics today: the quest to understand how the oldest and most distant galaxies in our universe first formed. Until now, most research on this question has been theoretical, but the next few years will bring about a new generation of large telescopes that promise to supply a flood of data about the infant universe during its first billion years after the big bang. This book bridges the gap between theory and observation. It is an invaluable reference for students and researchers on early galaxies. The book starts from basic physical principles before moving on to more advanced material. Topics include the gravitational growth of structure, the intergalactic medium, the formation and evolution of the first stars and black holes, feedback and galaxy evolution, reionization, 21-cm cosmology, and more.


2021 ◽  
Vol 103 (10) ◽  
Author(s):  
Rafkat Galeev ◽  
Ruslan Muharlyamov ◽  
Alexei A. Starobinsky ◽  
Sergey V. Sushkov ◽  
Mikhail S. Volkov

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 769
Author(s):  
Martiros Khurshudyan ◽  
Ratbay Myrzakulov

The goal of this paper is to study new cosmological models where the dark energy is a varying Chaplygin gas. This specific dark energy model with non-linear EoS had been often discussed in modern cosmology. Contrary to previous studies, we consider new forms of non-linear non-gravitational interaction between dark matter and assumed dark energy models. We applied the phase space analysis allowing understanding the late time behavior of the models. It allows demonstrating that considered non-gravitational interactions can solve the cosmological coincidence problem. On the other hand, we applied Bayesian Machine Learning technique to learn the constraints on the free parameters. In this way, we gained a better understanding of the models providing a hint which of them can be ruled out. Moreover, the learning based on the simulated expansion rate data shows that the models cannot solve the H0 tension problem.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Andreas Karch ◽  
Lisa Randall

Abstract We study Randall-Sundrum two brane setups with mismatched brane tensions. For the vacuum solutions, boundary conditions demand that the induced metric on each of the branes is either de Sitter, Anti-de Sitter, or Minkowski. For incompatible boundary conditions, the bulk metric is necessarily time-dependent. This introduces a new class of time-dependent solutions with the potential to address cosmological issues and provide alternatives to conventional inflationary (or contracting) scenarios. We take a first step in this paper toward such solutions. One important finding is that the resulting solutions can be very succinctly described in terms of an effective action involving only the induced metric on either one of the branes and the radion field. But the full geometry cannot necessarily be simply described with a single coordinate patch. We concentrate here on the time- dependent solutions but argue that supplemented with a brane stabilization mechanism one can potentially construct interesting cosmological models this way. This is true both with and without a brane stabilization mechanism.


Sign in / Sign up

Export Citation Format

Share Document