Regulation of the Functional State of the Human Brain by Real-Time Frequency−Phase Synchronization of Sensory Stimuli with the EEG Rhythm

2017 ◽  
Vol 51 (1) ◽  
pp. 28-32
Author(s):  
A. A. Pushkin ◽  
L. V. Lysenko ◽  
A. G. Sukhov ◽  
A. V. Vdovjuk ◽  
I. V. Scherban
2013 ◽  
Vol 333-335 ◽  
pp. 650-655
Author(s):  
Peng Hui Niu ◽  
Yin Lei Qin ◽  
Shun Ping Qu ◽  
Yang Lou

A new signal processing method for phase difference estimation was proposed based on time-varying signal model, whose frequency, amplitude and phase are time-varying. And then be applied Coriolis mass flowmeter signal. First, a bandpass filtering FIR filter was applied to filter the sensor output signal in order to improve SNR. Then, the signal frequency could be calculated based on short-time frequency estimation. Finally, by short window intercepting, the DTFT algorithm with negative frequency contribution was introduced to calculate the real-time phase difference between two enhanced signals. With the frequency and the phase difference obtained, the time interval of two signals was calculated. Simulation results show that the algorithms studied are efficient. Furthermore, the computation of algorithms studied is simple so that it can be applied to real-time signal processing for Coriolis mass flowmeter.


2013 ◽  
Vol 93 (5) ◽  
pp. 1392-1397 ◽  
Author(s):  
Ljubiša Stanković ◽  
Miloš Daković ◽  
Thayananthan Thayaparan

2017 ◽  
Vol 8 (11) ◽  
pp. 5326 ◽  
Author(s):  
Grégoire Vergotte ◽  
Kjerstin Torre ◽  
Venkata Chaitanya Chirumamilla ◽  
Abdul Rauf Anwar ◽  
Sergiu Groppa ◽  
...  

Biosensors ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 159
Author(s):  
James J. W. Hucklesby ◽  
Akshata Anchan ◽  
Simon J. O'Carroll ◽  
Charles P. Unsworth ◽  
E. Scott Graham ◽  
...  

Electric Cell-Substrate Impedance Sensing (ECIS), xCELLigence and cellZscope are commercially available instruments that measure the impedance of cellular monolayers. Despite widespread use of these systems individually, direct comparisons between these platforms have not been published. To compare these instruments, the responses of human brain endothelial monolayers to TNFα and IL1β were measured on all three platforms simultaneously. All instruments detected transient changes in impedance in response to the cytokines, although the response magnitude varied, with ECIS being the most sensitive. ECIS and cellZscope were also able to attribute responses to particular endothelial barrier components by modelling the multifrequency impedance data acquired by these instruments; in contrast the limited frequency xCELLigence data cannot be modelled. Consistent with its superior impedance sensing, ECIS exhibited a greater capacity than cellZscope to distinguish between subtle changes in modelled endothelial monolayer properties. The reduced resolving ability of the cellZscope platform may be due to its electrode configuration, which is necessary to allow access to the basolateral compartment, an important advantage of this instrument. Collectively, this work demonstrates that instruments must be carefully selected to ensure they are appropriate for the experimental questions being asked when assessing endothelial barrier properties.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3496 ◽  
Author(s):  
Casper Clausen ◽  
Maria Dimaki ◽  
Christian Bertelsen ◽  
Gustav Skands ◽  
Romen Rodriguez-Trujillo ◽  
...  

Monitoring of bacteria concentrations is of great importance in drinking water management. Continuous real-time monitoring enables better microbiological control of the water and helps prevent contaminated water from reaching the households. We have developed a microfluidic sensor with the potential to accurately assess bacteria levels in drinking water in real-time. Multi frequency electrical impedance spectroscopy is used to monitor a liquid sample, while it is continuously passed through the sensor. We investigate three aspects of this sensor: First we show that the sensor is able to differentiate Escherichia coli (Gram-negative) bacteria from solid particles (polystyrene beads) based on an electrical response in the high frequency phase and individually enumerate the two samples. Next, we demonstrate the sensor’s ability to measure the bacteria concentration by comparing the results to those obtained by the traditional CFU counting method. Last, we show the sensor’s potential to distinguish between different bacteria types by detecting different signatures for S. aureus and E. coli mixed in the same sample. Our investigations show that the sensor has the potential to be extremely effective at detecting sudden bacterial contaminations found in drinking water, and eventually also identify them.


Author(s):  
Xerxes D. Arsiwalla ◽  
Riccardo Zucca ◽  
Alberto Betella ◽  
Enrique Martinez ◽  
David Dalmazzo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document