scholarly journals Divergent temperature-specific metabolic and feeding rates of native and invasive crayfish

Author(s):  
T. J. Ruokonen ◽  
J. Karjalainen

AbstractTemperature is one of the most important factors governing the activity of ectothermic species, and it plays an important but less studied role in the manifestation of invasive species impacts. In this study, we investigated temperature-specific feeding and metabolic rates of invasive and native crayfish, and evaluated how temperature regulates their ecological impacts at present and in future according to different climatic scenarios by bioenergetics modelling. We conducted a series of maximum food consumption experiments and measured the metabolic rates of cold-adapted native noble crayfish (Astacus astacus) and invasive signal crayfish (Pacifastacus leniusculus) originally from a warmer environment over a temperature gradient resembling natural temperatures in Finland. The maximum feeding rates and routine metabolic rates (RMR) of native noble crayfish were significantly higher at low temperatures (< 10 °C than the rates of invasive signal crayfish. The RMRs of the species crossed at 18 °C, and the RMRs of signal crayfish were higher at temperatures above 18 °C. These findings indicate that the invader’s thermal niche has remained stable, and the potential impacts per capita are lower at suboptimal cold temperatures than for the native species. Our bioenergetics modelling showed that the direct annual predation impact of noble and signal crayfish seem similar, although the seasonal dynamics of the predation differs considerably between species. Our results highlight that the temperature-specific metabolic and feeding rates of species need to be taken into account in the impact assessment instead of simple generalisations of the direction or magnitude of impacts.

Parasitology ◽  
2020 ◽  
Vol 147 (6) ◽  
pp. 706-714 ◽  
Author(s):  
John Rhidian Thomas ◽  
Chloe V. Robinson ◽  
Agata Mrugała ◽  
Amy R. Ellison ◽  
Emily Matthews ◽  
...  

AbstractThe spread of invasive, non-native species is a key threat to biodiversity. Parasites can play a significant role by influencing their invasive host's survival or behaviour, which can subsequently alter invasion dynamics. The North American signal crayfish (Pacifastacus leniusculus) is a known carrier of Aphanomyces astaci, an oomycete pathogen that is the causative agent of crayfish plague and fatal to European crayfish species, whereas North American species are considered to be largely resistant. There is some evidence, however, that North American species, can also succumb to crayfish plague, though how A. astaci affects such ‘reservoir hosts’ is rarely considered. Here, we tested the impact of A. astaci infection on signal crayfish, by assessing juvenile survival and adult behaviour following exposure to A. astaci zoospores. Juvenile signal crayfish suffered high mortality 4-weeks post-hatching, but not as older juveniles. Furthermore, adult signal crayfish with high-infection levels displayed altered behaviours, being less likely to leave the water, explore terrestrial areas and exhibit escape responses. Overall, we reveal that A. astaci infection affects signal crayfish to a much greater extent than previously considered, which may not only have direct consequences for invasions, but could substantially affect commercially harvested signal crayfish stocks worldwide.


Author(s):  
Amy Krist ◽  
Mark Dybdahl

Invasive species are one of the greatest threats to global biodiversity. Hence, understanding the role of invasive species is of grave importance to managing and minimizing the impact of biological invasions. To date, the ecological impacts of biological invasions have received significant attention, but little effort has been made to address the evolutionary impact (Sakai et al. 2001, Cox 2004). This is despite the fact that evolutionary impacts are likely to be widespread; invasive species have been shown to alter patterns of natural selection or gene flow within native populations (Parker et al. 1999), and many of the best examples of rapid evolution involve invasive species interacting with native species (Reznick and Ghalambor 2001, Strauss et al. 2006). We have begun to address some of the evolutionary consequences of the invasion of the New Zealand mud snail, (Potamopyrgus antipodarum) on a species of native snail in the Greater Yellowstone Area (GYA).


2020 ◽  
Vol 83 (1) ◽  
Author(s):  
Sara Roje ◽  
Kateřina Švagrová ◽  
Lukáš Veselý ◽  
Arnaud Sentis ◽  
Antonín Kouba ◽  
...  

Abstract Freshwater ecosystems worldwide are facing the establishment of non-native species, which, in certain cases, exhibit invasive characteristics. The impacts of invaders on native communities are often detrimental, yet, the number and spread of non-native invasive species is increasing. This is resulting in novel and often unexpected combinations of non-native and native species in natural communities. While the impact of invaders on native species is increasingly well-documented, the interactions of non-native invaders with other non-native invaders are less studied. We assessed the potential of an invasive amphipod, the killer shrimp Dikerogammarus villosus (Sowinsky, 1894), to cope with other established invaders in European waters: North American crayfish of the Astacidae family—represented by signal crayfish Pacifastacus leniusculus (Dana, 1852), and the Cambaridae family—represented by marbled crayfish Procambarus virginalis Lyko, 2017. The main goal of this study was to investigate if killer shrimp, besides their role as prey of crayfish, can significantly influence their stocks by predating upon their eggs, hatchlings and free-moving early juveniles. Our results confirmed that killer shrimp can predate on crayfish eggs and hatchlings even directly from females abdomens where they are incubated and protected. As marbled crayfish have smaller and thinner egg shells as well as smaller juveniles than signal crayfish, they were more predated upon by killer shrimp than were signal crayfish. These results confirmed that the invasive killer shrimp can feed on different developmental stages of larger freshwater crustaceans and possibly other aquatic organisms.


2021 ◽  
Vol 168 (3) ◽  
Author(s):  
Ross N. Cuthbert ◽  
Ryan J. Wasserman ◽  
Tatenda Dalu ◽  
Elizabeta Briski

AbstractInvasive alien species impacts might be mediated by environmental factors such as climatic warming. For invasive predators, multiple predator interactions could also exacerbate or dampen ecological impacts. These effects may be especially pronounced in highly diverse coastal ecosystems that are prone to profound and rapid regime shifts. We examine emergent effects of warming on the strength of intraspecific multiple predator effects from a highly successful invasive gammarid Gammarus tigrinus, using a functional response approach towards larval chironomids (feeding rates under different prey densities). Single predator maximum feeding rates were three-times higher at 24 °C compared to 18 °C overall, with potentially prey destabilising type II functional responses exhibited. However, pairs of gammarids exhibited intraspecific multiple predator effects that were in turn mediated by temperature regime, whereby synergisms were found at the lower temperature (i.e. positive non-trophic interactions) and antagonisms detected at the higher temperature (i.e. negative non-trophic interactions) under high prey densities. Accordingly, warming scenarios may worsen the impact of this invasive alien species, yet implications of temperature change are dependent on predator–predator interactions. Emergent effects between abiotic and biotic factors should be considered in ecological impact predictions across habitat types for invasive alien species.


Oecologia ◽  
2014 ◽  
Vol 178 (1) ◽  
pp. 309-316 ◽  
Author(s):  
J. James ◽  
F. M. Slater ◽  
I. P. Vaughan ◽  
K. A. Young ◽  
J. Cable

1997 ◽  
Vol 18 (3) ◽  
pp. 217-228 ◽  
Author(s):  
Per Nyström ◽  
Eva Axelsson ◽  
Johan Sidenmark ◽  
Christer Brönmark

AbstractWe experimentally evaluated the impact of the introduced signal crayfish (Pacifastacus leniusculus) and the native noble crayfish (Astacus astacus) on eggs and larvae of seven species of amphibians, likely to co-occur with crayfish in southern Sweden. In aquarium experiments eggs and tadpoles of all amphibian species were consumed by both crayfish species. The consumption of amphibian eggs by signal crayfish increased with temperature. The noble crayfish consumed more tadpoles than the signal crayfish, but the latter caused more sub-lethal damage to tadpoles. Tadpoles of the common toad (Bufo bufo) were sometimes killed but left uneaten by both crayfish species. In pool experiments, signal crayfish consumed more tadpoles of Hyla arborea in a less complex habitat and significantly reduced survival of Hyla tadpoles and the biomass of aquatic macrophytes.


Author(s):  
Grzegorz Radtke ◽  
Rafał Bernaś ◽  
Piotr Dębowski ◽  
Dariusz Ulikowski ◽  
Andrzej Kapusta

In view of contemporary changes in aquatic environments, determining the distribution of both native and emerging invasive crayfish species is increasingly important. In central Europe, the three invasive crayfish species of the signal crayfish Pacifastacus leniusculus (Dana, 1852), the spiny-cheek crayfish Faxonius limosus (Rafinesque, 1817) and the red swamp crayfish Procambarus clarki (Girard, 1852) are of North American origin. The spiny-cheek crayfish was first brought to the southern Baltic basin at the end of nineteenth century, and its expansion ensued rapidly. At the same time, the indigenous species of the noble crayfish Astacus astacus (Linnaeus, 1758) began to disappear. The spread of the signal crayfish started in the second half of twentieth century; however, it has progressed strongly in recent years. Latest studies of fish fauna in the Drwęca River system, a tributary of the lower Vistula River, have simultaneously revealed new information on the occurrence of crayfish. The most widespread was spiny-cheek crayfish found at ten sites throughout the river basin. The second alien species, the signal crayfish, was noted in four locations in the upper part of the river system, but no mixed populations were noted. A particularly valuable result of the study was the discovery of an unknown site of noble crayfish in a small stream.


2020 ◽  
Vol 637 ◽  
pp. 195-208 ◽  
Author(s):  
EM DeRoy ◽  
R Scott ◽  
NE Hussey ◽  
HJ MacIsaac

The ecological impacts of invasive species are highly variable and mediated by many factors, including both habitat and population abundance. Lionfish Pterois volitans are an invasive marine species which have high reported detrimental effects on prey populations, but whose effects relative to native predators are currently unknown for the recently colonized eastern Gulf of Mexico. We used functional response (FR) methodology to assess the ecological impact of lionfish relative to 2 functionally similar native species (red grouper Epinephelus morio and graysby grouper Cephalopholis cruentata) foraging in a heterogeneous environment. We then combined the per capita impact of each species with their field abundance to obtain a Relative Impact Potential (RIP). RIP assesses the broader ecological impact of invasive relative to native predators, the magnitude of which predicts community-level negative effects of invasive species. Lionfish FR and overall consumption rate was intermediate to that of red grouper (higher) and graysby grouper (lower). However, lionfish had the highest capture efficiency of all species, which was invariant of habitat. Much higher field abundance of lionfish resulted in high RIPs relative to both grouper species, demonstrating that the ecological impact of lionfish in this region will be driven mainly by high abundance and high predator efficiency rather than per capita effect. Our comparative study is the first empirical assessment of lionfish per capita impact and RIP in this region and is one of few such studies to quantify the FR of a marine predator.


2021 ◽  
pp. 109963622199387
Author(s):  
Mathilde Jean-St-Laurent ◽  
Marie-Laure Dano ◽  
Marie-Josée Potvin

The effect of extreme cold temperatures on the quasi-static indentation and the low velocity impact behavior of woven carbon/epoxy composite sandwich panels with Nomex honeycomb core was investigated. Impact tests were performed at room temperature, –70°C, and –150°C. Two sizes of hemispherical impactor were used combined to three different impactor masses. All the impact tests were performed at the same initial impact velocity. The effect of temperature on the impact behavior is investigated by studying the load history, load-displacement curves and transmitted energy as a function of time curves. Impact damage induced at various temperatures was studied using different non-destructive and destructive techniques. Globally, more damages are induced with impact temperature decreasing. The results also show that the effect of temperature on the impact behavior is function of the impactor size.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kaoru Tachiiri ◽  
Xuanming Su ◽  
Ken’ichi Matsumoto

AbstractFor the purpose of identifying the key processes and sectors involved in the interaction between Earth and socio-economic systems, we review existing studies on those processes/sectors through which the climate impacts socio-economic systems, which then in turn affect the climate. For each process/sector, we review the direct physical and ecological impacts and, if available, the impact on the economy and greenhouse gas (GHG) emissions. Based on this review, land sector is identified as the process with the most significant impact on GHG emissions, while labor productivity has the largest impact on the gross domestic product (GDP). On the other hand, the energy sector, due to the increase in the demand for cooling, will have increased GHG emissions. Water resources, sea level rise, natural disasters, ecosystem services, and diseases also show the potential to have a significant influence on GHG emissions and GDP, although for most of these, a large effect was reported only by a limited number of studies. As a result, more studies are required to verify their influence in terms of feedbacks to the climate. In addition, although the economic damage arising from migration and conflict is uncertain, they should be treated as potentially damaging processes.


Sign in / Sign up

Export Citation Format

Share Document