scholarly journals Recent changes in the frequency of plant species and vegetation types in Scania, S Sweden, compared to changes during the twentieth century

2019 ◽  
Vol 29 (3) ◽  
pp. 709-728 ◽  
Author(s):  
Torbjörn Tyler ◽  
Stefan Andersson ◽  
Lars Fröberg ◽  
Kjell-Arne Olsson ◽  
Åke Svensson ◽  
...  

AbstractBased on data from three surveys of the vascular flora of the province of Scania, southernmost Sweden, conducted 1938–1971, 1987–2006 and 2008–2015, we analyse the change in frequency of individual species and groups of species associated with particular vegetation types. A majority of all species have experienced a change in frequency since 1938, and this turnover has continued in recent decades. The species showing the most dramatic declines since 1987 represent a mixture of arable weeds, grassland species and ruderals, but excludes forest species. In contrast, a majority of the most increasing species are escapes from cultivation that thrive under shaded conditions. The vegetation types showing the largest decreases since 1987 are all open seminatural grasslands and wetlands, while the vegetation types performing best are wooded. All vegetation types increasing since 1987 also increased during the 1900s; however, species of wooded types performed relatively better in recent decades, as opposed to the minimal increase observed for species of vegetation strongly influenced by human activities. Among decreasing vegetation types, those that have received much attention from conservationists, e.g. sand-steppe and calcareous fens tend to perform relatively better now than during the 1900s, while those that have received less attention, e.g. poor fens, oligotrophic waters and heaths, now comprise the most rapidly declining vegetation types. A majority of the species that decreased 1938–1996 also decreased 1987–2015, but, in general, species shown to have increased during the 1900s have not continued to increase.

1985 ◽  
Vol 63 (12) ◽  
pp. 2240-2242
Author(s):  
Brian M. Wikeem ◽  
Reg F. Newman

Field studies and herbarium searches during 1983 and 1984 have revealed range extensions of three grassland plant species in the southern interior of British Columbia. These species include Allium geyeri Wats. var. tenerum Jones, Gaura coccinea (Nutt.) Pursh, and Sidalcea oregana (Nutt.) Gray ssp. oregana var. procera C. L. Hitchc. All three taxa were previously unknown to the Kamloops area and Sidalcea oregana is new to the province and Canada.


2009 ◽  
Vol 142 (11) ◽  
pp. 2501-2509 ◽  
Author(s):  
Miia Parviainen ◽  
Mathieu Marmion ◽  
Miska Luoto ◽  
Wilfried Thuiller ◽  
Risto K. Heikkinen

2021 ◽  
Vol 748 (1) ◽  
pp. 012009
Author(s):  
Agusyadi Ismail ◽  
Yayan Hendrayana ◽  
Dadan Ramadani ◽  
Sri Umiyati

Abstract Mount Ciremai National Park forest that area had been encroached. Because of that condition, stand structure especially the species composition and vegetation structure need to be researched. The aim of this research was to identify plant species and analyze forest vegetation structure. This research was conducted between March–April 2018 in the 15.500 ha area with 0.02% sampling intensity. Data was collected using grid line method that consisted of 34 sample plots with the 10 m distance between the plots and 20 m between the lines. The numbers of identified plant species at the research location were 43 species, classified by 10 families and 24 genera. Cinnamomum sintoc has a high level of dominance species. The forest vegetation was consisting by the different growth phases. The tree phase has the highest density of 3672 species/ha, while the seedling phase was lowest density of 1060 species/ha. The forest crown stratification were consisting of A, B, C, D and E stratum. The highest number of plants were from C strata for 4651 trees and the least from A strata with 25 trees with the highest tree was 42 m. Could be concluded that the composition of Mount Ciremai National Park forest have so many number of species and complex structure vegetation forest.


Author(s):  
Abdul Wali Ahmed Al-Khulaidi ◽  
Abdul Habib Al-Qadasi ◽  
Othman Saad Saeed Al-Hawshabi

The study area is located on the South western mountains of Republic of Yemen, It is characterized by arid and semi-arid climate with high temperatures and low average annual rainfall. The aims of this study are to explore the natural plant species of one of the Important Plant areas of Arabian Peninsula and to evaluate the chance to be a protected area. 61 sample sites covering the whole ecological zones haven been conducted. 135 plant species are found, in which 3 plant species were endemic, 7 near endemic, 29 regional endemic. The study revealed also three vegetation communities with 7 vegetation associations (vegetation types). Vegetation dominated by Ficus cordata, F. sycomorus, Salvadora persica Tamarix aphylla and Ziziphus spina-christi were found on main wadis. Vegetation communities dominated by Acacia asak, Anisotes trisulcus, Jatropha variegate and Zygocarpum yemenense were found on rocky slopes and stony plateau.


2019 ◽  
Author(s):  
Daniel E. Pabon-Moreno ◽  
Talie Musavi ◽  
Mirco Migliavacca ◽  
Markus Reichstein ◽  
Christine Römermann ◽  
...  

Abstract. Quantifying responses of vegetation phenology to climate variability is a key prerequisite to predict shifts in how ecosystem dynamics due to climate change. So far, many studies have focused on responses of classical phenological events (e.g. budburst or flowering) to climatic variability for individual species. Comparatively little is known on physio-phenological events such as the timing of the maximum gross primary production (DOYGPPmax). However, understanding this type of physio-phenological phenomena is an essential element in predicting the response of the terrestrial carbon cycle to climate variability. In this study, we aim to understand how DOYGPPmax depends on climate drivers across 52 eddy-covariance (EC) sites in the FLUXNET network for different regions of the world. Most phenological studies rely on linear methods that cannot be generalized across both hemispheres and therefore do not allow for deriving general rules that can be applied for future predictions. Here we explore a new class of circular-linear (here called circular) regression approach that may show a path ahead. Circular regression allows relating circular variables (in our case phenological events) to linear predictor variables (e.g. climate conditions). As a proof of concept, we compare the performance of linear and circular regression to recover original coefficients of a predefined circular model on artificial and EC data. We then quantify the sensitivity of DOYGPPmax to air temperature, short-wave incoming radiation, precipitation and vapor pressure deficit using circular regressions. Finally, we evaluate the predictive power of the regression models for different vegetation types. Our results show that the DOYGPPmax of each FLUXNET site has a unique signature of climatic sensitivities. Overall radiation and temperature are the most relevant controlling factors of DOYGPPmax across sites. The circular approach gives us new insights at the site level. In a Mediterranean shrub-land, for instance, we find that the two growing seasons are controlled by different climatic factors. Although the sensitivity of the DOYGPPmax to the climate drivers is very site specific, it is possible to extrapolate the circular regression model across vegetation types. From a methodological point of view, our results reveal that circular regression is a robust alternative to conventional phenological analytic frameworks. In particular global analyses can benefit, where phase shifts play a role or double peaked growing seasons may occur.


2014 ◽  
Vol 11 (3) ◽  
pp. 4591-4636 ◽  
Author(s):  
E. M. Veenendaal ◽  
M. Torello-Raventos ◽  
T. R. Feldpausch ◽  
T. F. Domingues ◽  
F. Gerard ◽  
...  

Abstract. Through interpretations of remote sensing data and/or theoretical propositions, the idea that forest and savanna represent "alternative stable states" is gaining increasing acceptance. Filling an observational gap, we present detailed stratified floristic and structural analyses for forest and savanna stands mostly located within zones of transition (where both vegetation types occur in close proximity) in Africa, South America and Australia. Woody plant leaf area index variation was related in a similar way to tree canopy cover for both savanna and forest with substantial overlap between the two vegetation types. As total woody plant canopy cover increased, so did the contribution of middle and lower strata of woody vegetation to this total. Herbaceous layer cover also declined as woody cover increased. This pattern of understorey grasses and herbs being progressively replaced by shrubs as canopy closure occurs was found for both savanna and forests and on all continents. Thus, once subordinate woody canopy layers are taken into account, a less marked transition in woody plant cover across the savanna-forest species discontinuum is observed compared to that implied when trees of a basal diameter > 0.1m are considered in isolation. This is especially the case for shrub-dominated savannas and in taller savannas approaching canopy closure. An increased contribution of forest species to the total subordinate cover is also observed as savanna stand canopy closure occurs. Despite similarities in canopy cover characteristics, woody vegetation in Africa and Australia attained greater heights and stored a greater concentration of above ground biomass than in South America. Up to three times as much aboveground biomass is stored in forests compared to savannas under equivalent climatic conditions. Savanna/forest transition zones were also found to typically occur at higher precipitation regimes for South America than for Africa. Nevertheless, coexistence was found to be confined to a well-defined edaphic/climate envelope consistent across all three continents with both soil and climate playing a role as the key determinants of the relative location of forest and savanna. Taken together these observations do not lend support the notion of alternate stable states mediated through fire-feedbacks as the prime force shaping the distribution of the two dominant vegetation types of the tropical lands.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Anna Poncet ◽  
Christoph Schunko ◽  
Christian R. Vogl ◽  
Caroline S. Weckerle

Abstract Background Local plant knowledge typically is unevenly distributed within a community. This knowledge variation is important in understanding people’s relationship with their environment. Here we ask about knowledge variation among farmers’ families in the Napf region of Switzerland. Methods In 2008 and 2009, 60 adults and children living on 14 farms were interviewed about known and used plant species, and the data analyzed for knowledge variation. The farms were chosen by random stratified sampling, and freelisting and semi-structured interviews were conducted individually in the local idiom. The data were organized in an access database and analyzed with descriptive statistics, correlations, Mann–Whitney U tests and cultural domain analysis. Results Totally, 456 folk taxa were listed, whereas frequently listed species are common meadow and forest species. Uses were indicated for 391 taxa, most of them culinary, followed by fodder, wood, medicinal and ornamental uses. Local plant knowledge correlates with age and gender. Due to professional specialization, adults above 20 years have broader plant knowledge than children and adolescents. This is true for almost all examined habitat and plant use categories except for toy uses. Women and men share a common body of plant knowledge especially about herbaceous grassland species and woody species. Specialized knowledge of men is linked to cattle fodder and the processing of wood, specialized knowledge of women concerns edible, medicinal and ornamental plants, often garden species, but also herbaceous forest species. Conclusion In a rural region like the Napf, people retain a solid basis of plant knowledge. The variation of plant knowledge within farmers’ families of this region reflects sociocultural patterns. As these patterns are changing and as (agro)biodiversity is declining, local plant knowledge in the Napf region is suspected to undergo a mainstreaming process.


2021 ◽  
Vol 120 ◽  
pp. 106880
Author(s):  
Stephanie Schelfhout ◽  
Safaa Wasof ◽  
Jan Mertens ◽  
Margot Vanhellemont ◽  
Andreas Demey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document