scholarly journals Accurate discretization of poroelasticity without Darcy stability

Author(s):  
Kent-Andre Mardal ◽  
Marie E. Rognes ◽  
Travis B. Thompson

AbstractIn this manuscript we focus on the question: what is the correct notion of Stokes–Biot stability? Stokes–Biot stable discretizations have been introduced, independently by several authors, as a means of discretizing Biot’s equations of poroelasticity; such schemes retain their stability and convergence properties, with respect to appropriately defined norms, in the context of a vanishing storage coefficient and a vanishing hydraulic conductivity. The basic premise of a Stokes–Biot stable discretization is: one part Stokes stability and one part mixed Darcy stability. In this manuscript we remark on the observation that the latter condition can be generalized to a wider class of discrete spaces. In particular: a parameter-uniform inf-sup condition for a mixed Darcy sub-problem is not strictly necessary to retain the practical advantages currently enjoyed by the class of Stokes–Biot stable Euler–Galerkin discretization schemes.

Robotica ◽  
2008 ◽  
Vol 26 (5) ◽  
pp. 691-701 ◽  
Author(s):  
M. Ani Hsieh ◽  
Vijay Kumar ◽  
Luiz Chaimowicz

SUMMARYWe address the synthesis of controllers for a swarm of robots to generate a desired two-dimensional geometric pattern specified by a simple closed planar curve with local interactions for avoiding collisions or maintaining specified relative distance constraints. The controllers are decentralized in the sense that the robots do not need to exchange or know each other's state information. Instead, we assume that the robots have sensors allowing them to obtain information about relative positions of neighbors within a known range. We establish stability and convergence properties of the controllers for a certain class of simple closed curves. We illustrate our approach through simulations and consider extensions to more general planar curves.


2012 ◽  
Vol 17 (2) ◽  
pp. 227-244 ◽  
Author(s):  
Natalia Boal ◽  
Francisco Jos´e Gaspar ◽  
Francisco Lisbona ◽  
Petr Vabishchevich

This paper deals with the numerical solution of a two-dimensional thermoporoelasticity problem using a finite-difference scheme. Two issues are discussed: stability and convergence in discrete energy norms of the finite-difference scheme are proved, and secondly, a distributive smoother is examined in order to find a robust and efficient multigrid solver for the corresponding system of equations. Numerical experiments confirm the convergence properties of the proposed scheme, as well as fast multigrid convergence.


Author(s):  
Lawrence Osa Adoghe

In this paper, an L-stable third derivative multistep method has been proposed for the solution of stiff systems of ordinary differential equations. The continuous hybrid method is derived using interpolation and collocation techniques of power series as the basis function for the approximate solution. The method consists of the main method and an additional method which are combined to form a block matrix and implemented simultaneously. The stability and convergence properties of the block were investigated and discussed. Numerical examples to show the efficiency and accuracy of the new method were presented.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Long Qin ◽  
Yabing Zha ◽  
Quanjun Yin ◽  
Yong Peng

Formation control of multirobot systems has drawn significant attention in the recent years. This paper presents a potential field control algorithm, navigating a swarm of robots into a predefined 2D shape while avoiding intermember collisions. The algorithm applies in both stationary and moving targets formation. We define the bounded artificial forces in the form of exponential functions, so that the behavior of the swarm drove by the forces can be adjusted via selecting proper control parameters. The theoretical analysis of the swarm behavior proves the stability and convergence properties of the algorithm. We further make certain modifications upon the forces to improve the robustness of the swarm behavior in the presence of realistic implementation considerations. The considerations include obstacle avoidance, local minima, and deformation of the shape. Finally, detailed simulation results validate the efficiency of the proposed algorithm, and the direction of possible futrue work is discussed in the conclusions.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Eleonora Messina ◽  
Antonia Vecchio

We consider Volterra integral equations on time scales and present our study about the long time behavior of their solutions. We provide sufficient conditions for the stability and investigate the convergence properties when the kernel of the equations vanishes at infinity.


Sign in / Sign up

Export Citation Format

Share Document