scholarly journals Construction of cellulose/carboxymethyl chitosan hydrogels for potential wound dressing application

Cellulose ◽  
2021 ◽  
Author(s):  
Yi Guo ◽  
Chuanyin Zhao ◽  
Chao Yan ◽  
Li Cui
2021 ◽  
Author(s):  
Yi Guo ◽  
Chuanyin Zhao ◽  
Chao Yan ◽  
Li Cui

Abstract In this study, novel cellulose/carboxymethyl chitosan (CMCS) composite hydrogels were constructed by blending cellulose and CMCS in LiOH/urea aqueous solutions, and then cross-linking with epichlorohydrin. The structure and morphology of the composite hydrogels were characterized by Fourier transform infrared spectroscopy (FT-IR), wide-angle X-ray diffraction (WXRD), thermo-gravimetric analysis (TGA), and scanning electron microscopy (SEM). The results revealed that the chemical cross-linking reaction between cellulose and CMCS occurred in the hydrogel, and CMCS contributed to the enhancement of pore size, whereas cellulose as a strong backbone in the hydrogel to support the pore wall. The mechanical strength of the composite hydrogels increased with the cellulose content, while the equilibrium swelling ratio and antibacterial activity increased with the CMCS content. The composite hydrogels had no cytotoxicity towards L929 cells, suggesting good biocompatibility. All these results indicate that cellulose/CMCS composite hydrogels can be effectively used as a material in wound dressing.


2021 ◽  
pp. 51764
Author(s):  
Alireza Akbari ◽  
Shahram Rabbani ◽  
Shiva Irani ◽  
Mojgan Zandi ◽  
Fereshteh Sharifi ◽  
...  

2018 ◽  
Vol 40 ◽  
pp. 236-244 ◽  
Author(s):  
Daniela Huber ◽  
Adrianna Grzelak ◽  
Martina Baumann ◽  
Nicole Borth ◽  
Gerhard Schleining ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3279
Author(s):  
Longhao Jin ◽  
Sun-Jung Yoon ◽  
Dae Hoon Lee ◽  
Yun Chang Pyun ◽  
Woo Youp Kim ◽  
...  

Wound recovery close to the function of the native skin is the goal of wound healing. In this study, we prepared foam dressings (FDs; 2-GHC-FD-1–9, 5-GHC-FD-1–9, and 10-GHC-FD-1–9) composed of various concentrations of gelatin, hyaluronic acid, and carboxymethyl chitosan, which are chemically interconnected through amide bond formation, for evaluating wound healing. Tensile and cell proliferation tests showed that 2-GHC-FD-1–9 are suitable for wound dressing. For further evaluation, three types of FDs, 2-GHC-FD-1, 2-GHC-FD-4, and 2-GHC-FD-8 were chosen. The results of animal intradermal reactivity, water vapor transmission rate, and absorption rate of the three FDs indicated that 2-GHC-FD-8 is the most appropriate scaffold for wound healing. For wound healing acceleration, various concentrations of fibroblast growth factor-7 (FGF-7) was soaked in 2-GHC-FD-8 (2-GHC-FD-8/F1-6) and evaluated by using scanning electron microscopy, cell proliferation, release behavior, and in vivo animal tests. The FDs showed interconnected porous structures, increased cell proliferation until 8.0 × 10−11 M, controlled release with initial burst within 1 h, and sustained release for 48 h. The results of the animal test showed an appropriate concentration of FGF-7 for wound healing. In addition, 2-GHC-FD-8 is a suitable scaffold for wound healing. Therefore, we suggest that 2-GHC-FD-8/F3 is a useful wound dressing for accelerating wound healing.


2020 ◽  
Vol 21 (9) ◽  
pp. 1894-1905
Author(s):  
Gyu Dong Lee ◽  
Song Jun Doh ◽  
Yoonjin Kim ◽  
Jung Nam Im

2019 ◽  
Vol 138 (5) ◽  
pp. 3635-3643
Author(s):  
Andreia de Araújo Morandim-Giannetti ◽  
Patrick de Oliveira Wecchi ◽  
Paula de Araújo Silvério ◽  
Regina Carlstron ◽  
Patrícia Alessandra Bersanetti

2016 ◽  
Vol 40 ◽  
pp. 136-145 ◽  
Author(s):  
Metwally Ezzat ◽  
Mohammed Ghanim ◽  
Hassan Nageh ◽  
Ahmed H. Hassanin ◽  
Ahmed Abdel-Moneim

New green synthesis of Ag-nanoparticles (Ag-NPs) using O-Carboxymethyl Chitosan (O-CMCs) as stabilizing agent and ascorbic acid as reducing agent was achieved. The reaction was carried out in an autoclave at a pressure of 0.12 MPa and a temperature of 120°C at varying concentrations of solution precursors and different reaction times. The size, shape and structure of Ag-NPs were measured using transmission electron microscope (TEM), X-Ray Diffraction (XRD), FT-IR and UV spectrophotometers. The Ag-NPs stabilized in O-CMCs were blended with polyvinyl alcohol (PVA) polymer solution and then electrospun to produce wound dressing nanofibers with high antibacterial activity. The morphological study of O-CMCs/ PVA/Ag-NPs nanofiber membranes was characterized using SEM. Finally, the release behavior of Ag-NPs from these nanofibers was examined and the antibacterial activity was measured against some skin pathogenic bacteria and fungi using the agar diffusion method. The newly developed membranes show a unique antibacterial activity against the tested strains and were presented as promising active wound dressing materials in medical applications.


Author(s):  
Karol K. Kłosiński ◽  
◽  
Zbigniew Pasieka ◽  
Piotr T. Arkuszewski ◽  
Małgorzata K. Girek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document