Correction to: Contribution of advanced fluorescence nano microscopy towards revealing mitotic chromosome structure

Author(s):  
S. W. Botchway ◽  
S. Farooq ◽  
A. Sajid ◽  
I. K. Robinson ◽  
M. Yusuf
PLoS ONE ◽  
2010 ◽  
Vol 5 (9) ◽  
pp. e12768 ◽  
Author(s):  
Atsushi Matsuda ◽  
Lin Shao ◽  
Jerome Boulanger ◽  
Charles Kervrann ◽  
Peter M. Carlton ◽  
...  

Author(s):  
S. W. Botchway ◽  
S. Farooq ◽  
A. Sajid ◽  
I. K. Robinson ◽  
M. Yusuf

AbstractThe organization of chromatin into higher-order structures and its condensation process represent one of the key challenges in structural biology. This is important for elucidating several disease states. To address this long-standing problem, development of advanced imaging methods has played an essential role in providing understanding into mitotic chromosome structure and compaction. Amongst these are two fast evolving fluorescence imaging technologies, specifically fluorescence lifetime imaging (FLIM) and super-resolution microscopy (SRM). FLIM in particular has been lacking in the application of chromosome research while SRM has been successfully applied although not widely. Both these techniques are capable of providing fluorescence imaging with nanometer information. SRM or “nanoscopy” is capable of generating images of DNA with less than 50 nm resolution while FLIM when coupled with energy transfer may provide less than 20 nm information. Here, we discuss the advantages and limitations of both methods followed by their contribution to mitotic chromosome studies. Furthermore, we highlight the future prospects of how advancements in new technologies can contribute in the field of chromosome science.


2001 ◽  
Vol 21 (15) ◽  
pp. 5156-5168 ◽  
Author(s):  
Sue A. Krause ◽  
Marie-Louise Loupart ◽  
Sharron Vass ◽  
Stefan Schoenfelder ◽  
Steve Harrison ◽  
...  

ABSTRACT Two alleles of the Drosophila melanogaster Rfc4(DmRfc4) gene, which encodes subunit 4 of the replication factor C (RFC) complex, cause striking defects in mitotic chromosome cohesion and condensation. These mutations produce larval phenotypes consistent with a role in DNA replication but also result in mitotic chromosomal defects appearing either as premature chromosome condensation-like or precocious sister chromatid separation figures. Though the DmRFC4 protein localizes to all replicating nuclei, it is dispersed from chromatin in mitosis. Thus the mitotic defects appear not to be the result of a direct role for RFC4 in chromosome structure. We also show that the mitotic defects in these twoDmRfc4 alleles are the result of aberrant checkpoint control in response to DNA replication inhibition or damage to chromosomes. Not all surveillance function is compromised in these mutants, as the kinetochore attachment checkpoint is operative. Intriguingly, metaphase delay is frequently observed with the more severe of the two alleles, indicating that subsequent chromosome segregation may be inhibited. This is the first demonstration that subunit 4 of RFC functions in checkpoint control in any organism, and our findings additionally emphasize the conserved nature of RFC's involvement in checkpoint control in multicellular eukaryotes.


2003 ◽  
Vol 81 (3) ◽  
pp. 209-220 ◽  
Author(s):  
John F Marko ◽  
Michael G Poirier

The enzymes that transcribe, recombine, package, and duplicate the eukaryotic genome all are highly processive and capable of generating large forces. Understanding chromosome function therefore will require analysis of mechanics as well as biochemistry. Here we review development of new biophysical-biochemical techniques for studying the mechanical properties of isolated chromatin fibers and chromosomes. We also discuss microscopy-based experiments on cells that visualize chromosome structure and dynamics. Experiments on chromatin tell us about its flexibility and fluctuation, as well as quantifying the forces generated during chromatin assembly. Experiments on whole chromosomes provide insight into the higher-order organization of chromatin; for example, recent experiments have shown that the mitotic chromosome is held together by isolated chromatin-chromatin links and not a large, mechanically contiguous non-DNA "scaffold".Key words: DNA struture, chromatin, chromosomes, mitosis.


2003 ◽  
Vol 163 (5) ◽  
pp. 937-947 ◽  
Author(s):  
Hong-Guo Yu ◽  
Douglas E. Koshland

Condensin is an evolutionarily conserved protein complex that helps mediate chromosome condensation and segregation in mitotic cells. Here, we show that condensin has two activities that contribute to meiotic chromosome condensation in Saccharomyces cerevisiae. One activity, common to mitosis, helps mediate axial length compaction. A second activity promotes chromosome individualization with the help of Red1 and Hop1, two meiotic specific components of axial elements. Like Red1 and Hop1, condensin is also required for efficient homologue pairing and proper processing of double strand breaks. Consistent with these functional links condensin is necessary for proper chromosomal localization of Red1 and Hop1 and the subsequent assembly of the synaptonemal complex. Finally, condensin has a Red1/Hop1-independent role in the resolution of recombination-dependent linkages between homologues in meiosis I. The existence of distinct meiotic activities of condensin (axial compaction, individualization, and resolution of recombination-dependent links) provides an important framework to understand condensin's role in both meiotic and mitotic chromosome structure and function.


2002 ◽  
Vol 13 (6) ◽  
pp. 2170-2179 ◽  
Author(s):  
Michael G. Poirier ◽  
Sertac Eroglu ◽  
John F. Marko

The bending rigidities of mitotic chromosomes isolated from cultured N. viridescens (newt) and Xenopusepithelial cells were measured by observing their spontaneous thermal bending fluctuations. When combined with simultaneous measurement of stretching elasticity, these measurements constrain models for higher order mitotic chromosome structure. We measured bending rigidities of B ∼10−22 N · m2 for newt and ∼10−23 N · m2 forXenopus chromosomes extracted from cells. A similar bending rigidity was measured for newt chromosomes in vivo by observing bending fluctuations in metaphase-arrested cells. Following each bending rigidity measurement, a stretching (Young's) modulus of the same chromosome was measured in the range of 102 to 103 Pa for newt and Xenopus chromosomes. For each chromosome, these values of B and Y are consistent with those expected for a simple elastic rod, B ≈ YR4, where R is the chromosome cross-section radius. Our measurements rule out the possibility that chromosome stretching and bending elasticity are principally due to a stiff central core region and are instead indicative of an internal structure, which is essentially homogeneous in its connectivity across the chromosome cross-section.


Sign in / Sign up

Export Citation Format

Share Document