scholarly journals Evaluation of hydrological effect of stakeholder prioritized climate change adaptation options based on multi-model regional climate projections

2014 ◽  
Vol 123 (2) ◽  
pp. 225-239 ◽  
Author(s):  
Ajay Gajanan Bhave ◽  
Ashok Mishra ◽  
Narendra Singh Raghuwanshi
2012 ◽  
Vol 32 ◽  
pp. 99-107 ◽  
Author(s):  
J. Korck ◽  
J. Danneberg ◽  
W. Willems

Abstract. The Inn River basin is a highly relevant study region in terms of potential hydrological impacts of climate change and cross boundary water management tasks in the Alpine Space. Regional analyses in this catchment were performed within the EU co-funded project AdaptAlp. Objective of the study was to gain scientifically based knowledge about impacts of climate change on the water balance and runoff regime for the Inn River basin, this being fundamental for the derivation of adaptation measures. An ensemble of regional climate projections is formed by combinations of global and regional climate models on the basis of both statistical and bias-corrected dynamical downscaling procedures. Several available reference climate datasets for the study region are taken into account. As impact model, the process-oriented hydrological model WaSiM-ETH is set up. As expected, regional climate projections indicate temperature increases for the future in the study area. Projections of precipitation change are less homogenous, especially regarding winter months, though most indicate a decrease in the summer. Hydrological simulation results point towards climate induced changes in the water regime of the study region. The analysis of hydrological projections at both ends of the ensemble bandwidth is a source of adaptation relevant information regarding low-flow and high-flow conditions. According to a "drought-prone scenario", mean monthly low flow could decrease up to −40% in the time frame of 2071–2100. A "high-flow-increase-scenario" points towards an increase in mean monthly high flow in the order of +50% in the winter, whilst showing a decrease in autumn.


2019 ◽  
Vol 55 (1) ◽  
pp. 130-155 ◽  
Author(s):  
Andre R. Erler ◽  
Steven K. Frey ◽  
Omar Khader ◽  
Marc d'Orgeville ◽  
Young‐Jin Park ◽  
...  

2017 ◽  
Vol 8 ◽  
Author(s):  
Kristin Kane ◽  
Diane M. Debinski ◽  
Chris Anderson ◽  
John D. Scasta ◽  
David M. Engle ◽  
...  

2018 ◽  
Vol 10 (2) ◽  
pp. 815-835 ◽  
Author(s):  
Dominikus Heinzeller ◽  
Diarra Dieng ◽  
Gerhard Smiatek ◽  
Christiana Olusegun ◽  
Cornelia Klein ◽  
...  

Abstract. Climate change and constant population growth pose severe challenges to 21st century rural Africa. Within the framework of the West African Science Service Center on Climate Change and Adapted Land Use (WASCAL), an ensemble of high-resolution regional climate change scenarios for the greater West African region is provided to support the development of effective adaptation and mitigation measures. This contribution presents the overall concept of the WASCAL regional climate simulations, as well as detailed information on the experimental design, and provides information on the format and dissemination of the available data. All data are made available to the public at the CERA long-term archive of the German Climate Computing Center (DKRZ) with a subset available at the PANGAEA Data Publisher for Earth & Environmental Science portal (https://doi.pangaea.de/10.1594/PANGAEA.880512). A brief assessment of the data are presented to provide guidance for future users. Regional climate projections are generated at high (12 km) and intermediate (60 km) resolution using the Weather Research and Forecasting Model (WRF). The simulations cover the validation period 1980–2010 and the two future periods 2020–2050 and 2070–2100. A brief comparison to observations and two climate change scenarios from the Coordinated Regional Downscaling Experiment (CORDEX) initiative is presented to provide guidance on the data set to future users and to assess their climate change signal. Under the RCP4.5 (Representative Concentration Pathway 4.5) scenario, the results suggest an increase in temperature by 1.5 ∘C at the coast of Guinea and by up to 3 ∘C in the northern Sahel by the end of the 21st century, in line with existing climate projections for the region. They also project an increase in precipitation by up to 300 mm per year along the coast of Guinea, by up to 150 mm per year in the Soudano region adjacent in the north and almost no change in precipitation in the Sahel. This stands in contrast to existing regional climate projections, which predict increasingly drier conditions. The high spatial and temporal resolution of the data, the extensive list of output variables, the large computational domain and the long time periods covered make this data set a unique resource for follow-up analyses and impact modelling studies over the greater West African region. The comprehensive documentation and standardisation of the data facilitate and encourage their use within and outside of the WASCAL community.


2017 ◽  
Author(s):  
Dominikus Heinzeller ◽  
Diarra Dieng ◽  
Gerhard Smiatek ◽  
Christiana Olusegun ◽  
Cornelia Klein ◽  
...  

Abstract. Climate change and constant population growth pose severe challenges to 21st century rural Africa. Within the framework of the West African Science Service Center on Climate Change and Adapted Land Use (WASCAL), an ensemble of high-resolution regional climate change scenarios for the greater West African region are provided to support the development of effective adaptation and mitigation measures. This contribution presents the overall concept of the WASCAL regional climate simulations as well as detailed information on the experiment design, and provides information on the format and dissemination of the available data. All data is made available to the public at the CERA long-term archive of the German Climate Computing Center (DKRZ) with a subset available at the PANGAEA Data Publisher for Earth & Environmental Science portal (https://doi.pangaea.de/10.1594/PANGAEA.880512). Regional climate projections are generated at high (12 km) and intermediate (60 km) resolution using the Weather Research & Forecasting Model (WRF). The simulations cover the validation period 1980–2010 and the two future periods 2020–2050 and 2070–2100. A brief comparison to observations and two climate change scenarios from the CORDEX initiative is presented to provide guidance on the data set to future users and to assess their climate change signal. Under the RCP4.5 scenario, the results suggest an increase in temperature by 1.5 °C at the Coast of Guinea and by up to 3 °C in the northern Sahel by the end of the 21st century, in line with existing climate projections for the region. They also project an increase in precipitation by up to 300 mm per year along the Coast of Guinea, by up to 150 mm per year in the Soudano region adjacent in the North, and almost no change in precipitation in the Sahel. This stands in contrast to existing regional climate projections, which predict increasingly drier conditions. The high spatial and temporal resolution of the data, the extensive list of output variables, the large computational domain and the long time periods covered make this data set a unique resource for follow-up analyses and impact modelling studies over the greater West African region. The comprehensive documentation and standardisation of the data facilitate and encourage its use within and outside of the WASCAL community.


2003 ◽  
Vol 34 (5) ◽  
pp. 399-412 ◽  
Author(s):  
M. Rummukainen ◽  
J. Räisänen ◽  
D. Bjørge ◽  
J.H. Christensen ◽  
O.B. Christensen ◽  
...  

According to global climate projections, a substantial global climate change will occur during the next decades, under the assumption of continuous anthropogenic climate forcing. Global models, although fundamental in simulating the response of the climate system to anthropogenic forcing are typically geographically too coarse to well represent many regional or local features. In the Nordic region, climate studies are conducted in each of the Nordic countries to prepare regional climate projections with more detail than in global ones. Results so far indicate larger temperature changes in the Nordic region than in the global mean, regional increases and decreases in net precipitation, longer growing season, shorter snow season etc. These in turn affect runoff, snowpack, groundwater, soil frost and moisture, and thus hydropower production potential, flooding risks etc. Regional climate models do not yet fully incorporate hydrology. Water resources studies are carried out off-line using hydrological models. This requires archived meteorological output from climate models. This paper discusses Nordic regional climate scenarios for use in regional water resources studies. Potential end-users of water resources scenarios are the hydropower industry, dam safety instances and planners of other lasting infrastructure exposed to precipitation, river flows and flooding.


2016 ◽  
Vol 73 (9) ◽  
pp. 2251-2259 ◽  
Author(s):  
J. U. Hasse ◽  
D. E. Weingaertner

As the central product of the BMBF-KLIMZUG-funded Joint Network and Research Project (JNRP) ‘dynaklim – Dynamic adaptation of regional planning and development processes to the effects of climate change in the Emscher-Lippe region (North Rhine Westphalia, Germany)’, the Roadmap 2020 ‘Regional Climate Adaptation’ has been developed by the various regional stakeholders and institutions containing specific regional scenarios, strategies and adaptation measures applicable throughout the region. This paper presents the method, elements and main results of this regional roadmap process by using the example of the thematic sub-roadmap ‘Water Sensitive Urban Design 2020’. With a focus on the process support tool ‘KlimaFLEX’, one of the main adaptation measures of the WSUD 2020 roadmap, typical challenges for integrated climate change adaptation like scattered knowledge, knowledge gaps and divided responsibilities but also potential solutions and promising chances for urban development and urban water management are discussed. With the roadmap and the related tool, the relevant stakeholders of the Emscher-Lippe region have jointly developed important prerequisites to integrate their knowledge, to clarify vulnerabilities, adaptation goals, responsibilities and interests, and to foresightedly coordinate measures, resources, priorities and schedules for an efficient joint urban planning, well-grounded decision-making in times of continued uncertainties and step-by-step implementation of adaptation measures from now on.


Sign in / Sign up

Export Citation Format

Share Document