scholarly journals Correction to: Identification and characterization of deschloro-chlorothricin obtained from a large natural product library targeting aurora A kinase in multiple myeloma

Author(s):  
Nadire Özenver ◽  
Sara Abdelfatah ◽  
Anette Klinger ◽  
Edmond Fleischer ◽  
Thomas Efferth
Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3523
Author(s):  
Wancheng Guo ◽  
Haiqin Wang ◽  
Peng Chen ◽  
Xiaokai Shen ◽  
Boxin Zhang ◽  
...  

Multiple myeloma (MM) is a B-cell tumor of the blood system with high incidence and poor prognosis. With a further understanding of the pathogenesis of MM and the bone marrow microenvironment, a variety of adjuvant cell therapies and new drugs have been developed. However, the drug resistance and high relapse rate of MM have not been fundamentally resolved. Studies have shown that, in patients with MM, there is a type of poorly differentiated progenitor cell (MM stem cell-like cells, MMSCs). Although there is no recognized standard for identification and classification, it is confirmed that they are closely related to the drug resistance and relapse of MM. This article therefore systematically summarizes the latest developments in MMSCs with possible markers of MMSCs, introduces the mechanism of how MMSCs work in MM resistance and recurrence, and discusses the active pathways that related to stemness of MM.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1719-1719 ◽  
Author(s):  
Gullu Gorgun ◽  
Elisabetta Calabrese ◽  
Mala Mani ◽  
Teru Hideshima ◽  
Hiroshi Ikeda ◽  
...  

Abstract Multiple myeloma (MM) is an incurable bone marrow derived plasma cell malignancy. Despite significant improvements in treating patients suffering from this disease, MM remains uniformly fatal owing to intrinsic or acquired drug resistance. Thus, additional modalities for treating MM are required. In this study, we examined the anti-tumor activity of MLN8237, a small molecule Aurora-A kinase inhibitor, in experimental models of MM. Aurora-A is a mitotic kinase that localizes to centrosomes and the proximal mitotic spindle and functions in mitotic spindle formation and in regulating chromatid congression and segregation. Aurora-A gene amplification and protein overexpression is a common event in many cancers, and has been experimentally linked to genetic instability and tumorigenesis. In MM, increased Aurora-A gene expression has previously been correlated with centrosome amplification and a worsened disease prognosis. Thus, inhibition of Aurora A in MM may prove to be therapeutically beneficial. Here we show that Aurora-A protein is highly expressed in eight distinct MM cell lines. The affect of Aurora-A inhibition in these cell lines was examined in cytotoxicity (MTT viability) and proliferation (3[H]thymidine incorporation) assays by treating with MLN8237 (0.25 mM −32 mM) for 24, 48 and 72h. Although there was no significant inhibition of cell viability and proliferation at 24h, a marked effect occurred 48 and 72h after compound addition at concentrations as low as 0.25 mM. Interestingly, the melphalan resistant line (LR5) and Doxorubucin resistant line (Dox40) were among the least sensitive to MLN8237 induced cell cytotoxicity. The affect of MLN8237 on peripheral blood mononuclear cells (PBMCs) from healthy donors was also examined at the same concentrations and exposure time used for the MM cell lines. In healthy PBMCs, MLN8237 did not induce cytotoxicity as measured by the MTT assay, but there was a significant inhibition of proliferation at 48 and 72h as measured by the 3[H]thymidine incorporation assay at concentrations above 4uM. To delineate the mechanisms of cytotoxicity and growth inhibitory activity of MLN8237, apoptotic markers and cell cycle profiles were examined in the MM cell lines. Fluorescence conjugated-Annexin V and propidium iodide (PI) co-staining of MM cell lines after culturing in the presence or absence of MLN8237 at 1 mM (IC50) for 24, 48 and 72h demonstrated that MLN8237 induces apoptosis in these lines. This finding was corroborated by demonstrating increased capase-9 expression by Western blot analysis. Cell cycle analysis by flow cytometry demonstrated that MLN8237 results in an accumulation of tetraploid cells, presumably by abrogating G2/M progression. These results suggest that MLN8237 represents a possible novel agent for treating MM patients. Additional studies are ongoing to assess the anti-tumor effects of MLN8237 alone and in combination with other therapeutic agents in xenograft models of MM.


Author(s):  
Weibao Song ◽  
Hongjuan Zhang ◽  
Yu Zhang ◽  
Ying Chen ◽  
Yuan Lin ◽  
...  

The recurring outbreak of Zika virus (ZIKV) worldwide makes an emergent demand for novel, safe and efficacious anti-ZIKV agents. ZIKV non-structural protein 5 (NS5) methyltransferase (MTase), which is essential for viral replication, is regarded as a potential drug target. In our study, a luminescence-based methyltransferase assay was used to establish the ZIKV NS5 MTase inhibitor screening model. Through screening a natural product library, we found theaflavin, a polyphenol derived from tea, could inhibit ZIKV NS5 MTase activity with a 50% inhibitory concentration (IC50) of 10.10 μM. Molecular docking and site-directed mutagenesis analyses identified D146 as the key amino acid in the interaction between ZIKV NS5 MTase and theaflavin. The SPR assay indicated that theaflavin had a stronger binding activity with ZIKV NS5 wild-type (WT)-MTase than it with D146A-MTase. Moreover, theaflavin exhibited a dose dependent inhibitory effect on ZIKV replication with a 50% effective concentration (EC50) of 8.19 μM. All these results indicate that theaflavin is likely to be a promising lead compound against ZIKV.


2013 ◽  
Vol 29 (6) ◽  
pp. 1098-1103
Author(s):  
Xiao-xiao Sun ◽  
Tao Sun ◽  
Tai-yi Wang ◽  
Yan Zhang ◽  
Hui-juan Liu ◽  
...  

2010 ◽  
Author(s):  
Daniel C. Rabe ◽  
Tawnya McKee ◽  
Girma M. Woldemichael ◽  
James R. Vasselli ◽  
James McMahon ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4804
Author(s):  
Lara U. Szabó ◽  
Thomas J. Schmidt

The increasing drug resistance of malaria parasites challenges the treatment of this life-threatening disease. Consequently, the development of innovative and effective antimalarial drugs is inevitable. O-tigloylcyclovirobuxeine-B, a nor-cycloartane alkaloid from Buxussempervirens L., has shown promising and selective in vitro activity in previous studies against Plasmodiumfalciparum (Pf), causative agent of Malaria tropica. For further investigations, it is indispensable to develop an advanced and efficient isolation procedure of this valuable natural product. Accordingly, we used liquid–liquid chromatography including centrifugal partition chromatography (CPC) to obtain the pure alkaloid on a semi-preparative scale. Identification and characterization of the target compound was accomplished by UHPLC/+ESI-QqTOF-MS/MS, 1H NMR and 13C NMR. In conclusion, this work provides a new and efficient method to obtain O-tigloylcyclovirobuxeine-B, a valuable natural product, as a promising antiplasmodial lead structure for the development of innovative and safe medicinal agents.


Sign in / Sign up

Export Citation Format

Share Document