Silver nanoparticles with different particle sizes enhance the allelopathic effects of Canada goldenrod on the seed germination and seedling development of lettuce

Ecotoxicology ◽  
2018 ◽  
Vol 27 (8) ◽  
pp. 1116-1125 ◽  
Author(s):  
Congyan Wang ◽  
Kun Jiang ◽  
Bingde Wu ◽  
Jiawei Zhou ◽  
Yanna Lv
2018 ◽  
Vol 66 (4) ◽  
pp. 331 ◽  
Author(s):  
Congyan Wang ◽  
Kun Jiang ◽  
Bingde Wu ◽  
Jiawei Zhou

Increasing levels of heavy metals are released into ecosystems. The influence of heavy metal pollution on successful invasive species has raised considerable interest, particularly regarding potential allelopathic effects on seed germination and seedling development of native species. Adding heavy metals may alter or even enhance such allelopathic effects of invasive species. The aim of the present study was to address the combined treatments of the invasive species Canada goldenrod (Solidago canadensis L.) leaf extracts and cadmium (Cd) pollution on seed germination and seedling development of the homologous native species lettuce (Lactuca sativa L.). Results showed that the combined treatments of Canada goldenrod leaf extracts and Cd pollution significantly decreased seed germination and seedling development of lettuce compared with the control. In addition, the indices of allelopathic effects for all seed germination and seedling development indices of lettuce were less than zero under the combined treatments of high concentration of Canada goldenrod leaf extracts and Cd pollution (regardless of concentration). Thus, the combined treatments of high concentration of Canada goldenrod leaf extracts and Cd pollution pose an inhibitory effect on seed germination and seedling development of lettuce. Further, the combined treatments of high concentration of Canada goldenrod leaf extracts and Cd pollution (regardless of concentration) cause more toxic effects than the combined treatments of low concentration of Canada goldenrod leaf extracts and Cd pollution (regardless of concentration) on all seed germination and seedling development indices of lettuce. Thus, the inhibitory effects of Canada goldenrod on the seed germination and seedling development of co-occurring native species may be intensified at heavy invasion degrees under increased heavy metal pollution. Subsequently, the competitiveness and fitness of native species may be notably decreased via the reduced seed germination and seedling development and then the notorious invader can establish progressively-growing populations in the colonised ecosystems.


2020 ◽  
Vol 21 (22) ◽  
pp. 8465
Author(s):  
In Chul Kong ◽  
Kyung-Seok Ko ◽  
Dong-Chan Koh

Seven biological methods were adopted (three bacterial activities of bioluminescence, enzyme, enzyme biosynthetic, algal growth, seed germination, and root and shoot growth) to compare the toxic effects of two different sizes of silver nanoparticles (AgNPs). AgNPs showed a different sensitivity in each bioassay. Overall, the order of inhibitory effects was roughly observed as follows; bacterial bioluminescence activity ≈ root growth > biosynthetic activity of enzymes ≈ algal growth > seed germination ≈ enzymatic activity > shoot growth. For all bacterial activities (bioluminescence, enzyme, and enzyme biosynthesis), the small AgNPs showed statistically significantly higher toxicity than the large ones (p < 0.0036), while no significant differences were observed among other biological activities. The overall effects on the biological activities (except shoot growth) of the small AgNPs were shown to have about 4.3 times lower EC50 (high toxicity) value than the large AgNPs. These results also indicated that the bacterial bioluminescence activity appeared to be an appropriate method among the tested ones in terms of both sensitivity and the discernment of particle sizes of AgNPs.


2021 ◽  
Vol 22 (9) ◽  
pp. 4738
Author(s):  
Hye-Yeon Seok ◽  
Hyungjoon Bae ◽  
Taehyoung Kim ◽  
Syed Muhammad Muntazir Mehdi ◽  
Linh Vu Nguyen ◽  
...  

Despite increasing reports on the function of CCCH zinc finger proteins in plant development and stress response, the functions and molecular aspects of many non-tandem CCCH zinc finger (non-TZF) proteins remain uncharacterized. AtC3H59/ZFWD3 is an Arabidopsis non-TZF protein and belongs to the ZFWD subfamily harboring a CCCH zinc finger motif and a WD40 domain. In this study, we characterized the biological and molecular functions of AtC3H59, which is subcellularly localized in the nucleus. The seeds of AtC3H59-overexpressing transgenic plants (OXs) germinated faster than those of wild type (WT), whereas atc3h59 mutant seeds germinated slower than WT seeds. AtC3H59 OX seedlings were larger and heavier than WT seedlings, whereas atc3h59 mutant seedlings were smaller and lighter than WT seedlings. Moreover, AtC3H59 OX seedlings had longer primary root length than WT seedlings, whereas atc3h59 mutant seedlings had shorter primary root length than WT seedlings, owing to altered cell division activity in the root meristem. During seed development, AtC3H59 OXs formed larger and heavier seeds than WT. Using yeast two-hybrid screening, we isolated Desi1, a PPPDE family protein, as an interacting partner of AtC3H59. AtC3H59 and Desi1 interacted via their WD40 domain and C-terminal region, respectively, in the nucleus. Taken together, our results indicate that AtC3H59 has pleiotropic effects on seed germination, seedling development, and seed development, and interacts with Desi1 in the nucleus via its entire WD40 domain. To our knowledge, this is the first report to describe the biological functions of the ZFWD protein and Desi1 in Arabidopsis.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 419
Author(s):  
Siaka Dembélé ◽  
Robert B. Zougmoré ◽  
Adama Coulibaly ◽  
John P. A. Lamers ◽  
Jonathan P. Tetteh

Agriculture in Mali, a country in Sahelian West Africa, strongly depends on rainfall and concurrently has a low adaptive capacity, making it consequently one of the most vulnerable regions to climate change worldwide. Since early-season drought limits crop germination, and hence growth, ultimately yield during rain-fed depending on production is commonly experienced nowadays in Mali. Germination and establishment of key crops such as the staple sorghum could be improved by seed priming. The effects of hydro-priming with different water sources (e.g., distilled, tap, rain, river, well water) were evaluated respectively for three priming time durations in tepid e.g., at 25 °C (4, 8, and 12 h) and by hot water at 70 °C (in contrast to 10, 20, and 30 min.) in 2014 and 2015. Seed germination and seedling development of nine sorghum genotypes were monitored. Compared to non-primed seed treatments, hydro-priming significantly [p = 0.01] improved final germination percentage, germination rate index, total seedling length, root length, root vigor index, shoot length, and seedling dry weight. The priming with water from wells and rivers resulted in significant higher seed germination (85%) and seedling development, compared to the three other sources of water. Seed germination rate, uniformity, and speed were enhanced by hydro-priming also. It is argued that hydro-priming is a safe and simple method that effectively improve seed germination and seedling development of sorghum. If used in crop fields, the above most promising genotypes may contribute to managing early season drought and avoid failure of seed germination and crop failure in high climate variability contexts.


2018 ◽  
Vol 12 (5) ◽  
pp. 688-693 ◽  
Author(s):  
Mubashir Hussain ◽  
Naveed Iqbal Raja ◽  
Muhammad Iqbal ◽  
Muhammad Ejaz ◽  
Sumaira Aslam ◽  
...  

2011 ◽  
Vol 98 (10) ◽  
pp. 1613-1622 ◽  
Author(s):  
Clesnan Mendes-Rodrigues ◽  
Marli A. Ranal ◽  
Paulo E. Oliveira

AoB Plants ◽  
2015 ◽  
Vol 7 ◽  
Author(s):  
Risolandia Bezerra de Melo ◽  
Augusto César Franco ◽  
Clovis Oliveira Silva ◽  
Maria Teresa Fernandez Piedade ◽  
Cristiane Silva Ferreira

Sign in / Sign up

Export Citation Format

Share Document